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1. GENERAL INTRODUCTION 

The inductively coupled plasma is an electiodeless discharge in a gas (usually Ar) at 

atmospheric pressure. Radio frequency energy generated by a RF power source is inductively 

coupled to the plasma gas through a water cooled load coil (1). In ICP-MS the "Fassel" type 

quartz torch commonly used in emission (2) is mounted horizontally. The sample aerosol is 

introduced into the central flow, where the gas kinetic temperature is about 5000 K (3). The 

aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are 

subsequently extracted through two metal apertures (sampler and skimmer) into the mass 

spectrometer. Figure 1 in Chapter 4 depicts the operation of the inductively coupled plasma, 

and the extraction of ions into the ICP-MS interface. 

In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as 

the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix 

effects can be divided into two categories: 1) signal drift due to the deposition of solids on 

the sampling apertures; and/or 2) signal suppression or enhancement by the presence of the 

dissolved salts. The first category is now reasonably understood. The dissolved salts, 

especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The 

clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first 

stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the 

clogging increases with the time, the signal drifts down. Even at the very early stage of the 

development of ICP-MS, matrix effects had been observed. Houk et al. (4) found out that 

the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids. 
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A solution containing 500 ppm total dissolved solids caused considerable signal drift over 

the short term, because the sampling orifice was too small (typically 0.5 mm or less) in the 

early devices. Modem ICP-MS instruments use larger sampling orifices (1.0-1.3 mm) and 

skimmers (0.7-0.8 mm) and are more tolerant to high levels of concomitant ions. The 

maximum level of dissolved solids is about 0.2% nominally (1). 

The second category of matrix effects is still not well understood, and obviously, 

further studies are needed. In summary, high concentrations of matrix elements cause signal 

reduction (5), poor precision (6), and even memory effects (7). This chapter serves as a 

review of recent research about the matrix effects in ICP-MS. However, because of the 

amount of research in this area, in some cases only representative examples are given. 

Subsequent chapters present some research results focusing on this topic. 

Matrix Effects 

Using the same sample preparation procedures, the same plasma source, and the same 

type of nebulizer as ICP-AES, ICP-MS has its unique matrix effects. There have been some 

comprehensive studies (7) and good reviews (1, 8) to document matrix effects. 

Processes in the Plasma 

Atomic emission spectrometry using the ICP as the atomization and excitation source 

is relatively free from ionization interferences caused by easily ionizable elements in 

solution (4). However, the interference effects in ICP-MS was found to be more severe than 

in ICP-AES. Olivares and Houk (5) studied the suppression of analyte signal of Co by five 

salts: NaCl, MgCl2, NHjBr, and NH4CI. The extent of the suppression agreed with the order 

of ionization energies (IE). The concomitant salt with the most easily ionized element gave 
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the most severe suppression. They concluded that the suppression of analyte signal is due to 

the total ion density increase with the presence of some easily ionized concomitant ions in 

the solution. At high dissolved salt concentrations (above \%), the measurement was 

complicated by orifice clogging and transport loss of the salt and analyte in the desolvation 

system. 

Beauchemin (7) found that some easily ionized elements, such as Na, Mg, K, Ca and 

Cs can enhance analyte signal, while others, such as Al, B, and U, cause suppression for 

analytes V, Cr, Mn, Ni, Co, Cu, Zn, Cd and Pb in ICP-MS. Li was observed to be a 

neutral matrix. Gregoire (9) suggested that ambipolar diffusion in the ICP is responsible for 

matrix effects in ICP-MS. The model states that the excess electrons firom the easily ionized 

matrix elements diffuse out from the central channel, causing light analyte ions to follow, 

hence there is a decrease in the analyte signal. He believed that the matrix suppression in 

ICP-MS is strongly mass dependent. Hobbs and Olesik (10) observed significant suppression 

effects when matrix ions were added to the solution using both laser fluorescence and ICP-

MS. They believe that matrix effects appear to originate in the plasma. They agree with 

Gregoire (9) in that ambipolar diffusion is a possible explanation of the matrix effects in the 

plasma. But they believe that the matrix effects should not be dependent on the atomic 

weight of the analyte or the concomitant species. The radially resolved measurements in their 

studies confirm the lack of atomic weight dependence. 

Thompson and Houk (11) concluded that in general the matrix elements cause 

suppression under all the experimental conditions tested, including forward power, gas flow 

rates, ion lens voltages, and two different nebulizers. Olesik et al. (12, 13) recently studied 
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matrix effects in ICP-AES and ICP-MS using monodisperse dried microparticulate injector 

and laser fluorescence techniques. They observed that the Li^ temporal signal in the presence 

of 150 ppm Pb became broader and concluded that the matrix effects originate from the ICP 

rather than from the mass spectrometer. Tripkovic and Holclajtner-Antunovic (14, 15) 

believed that the matrix effects in the ICP strongly depend on the IE of the matrix elements. 

The easily ionized elements can increase the electron concentration significantly. 

Deposition of Salts on the Orifices 

Houk et al. (4) observed significant ICP-MS signal decrease when solutions 

containing Na at 500 ppm were nebulized in the earliest ICP-MS work. Olivares and 

Houk (5) recorded the Co signal reduction with the presence of high concentration of Na, 

which is due mainly to the clogging of their sampling cone. It is now clear that progressive 

clogging of the sampling orifice causes the analyte signal to deteriorate. Using flow injection 

to alleviate the clogging has been suggested (16, 17), and enlarged sampling and skimming 

orifices have been used (18-20). The drawback of the larger orifices is that a more powerful 

pumping system is necessary. Usually, when the total solids content is 0.1% or less in the 

solution, clogging of the sampling cone is not a severe problem (21). 

Matrix Effects in the Ion Extraction 

Early studies of matrix effects provided some conflicting information. For example, 

Tan and Horlick (22) studied matrix effects of Na, Cs, Zn, K, Rh, In, Cd, Sn and Sb on a 

range of analyte elements with different masses and first lEs. They found that the matrix 

effects depend strongly on aerosol gas flow rate. At low aerosol flow rates, the matrix 

suppresses sensitivity while at high flow rates, it enhances sensitivity, while plasma power 
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and sampling depth have no serious effect. They believed that pressure diffusion and Mach-

number focusing caused the mass separation, where lighter ions diffuse away and heavier 

ions are focused towards the axis. 

Despite the differences encountered in the observations, there are some general trends 

that can be summarized (8,22,23). 1) Lighter analyte ions are subject to more severe matrix 

effects. 2) Heavier matrix elements cause more severe suppression. 3) Easily ionized matrix 

elements cause more suppression than moderately ionized matrix elements. 4) The absolute 

amount of matrix element present in the solution rather than the mole ratio of matrix to 

analyte is important in the suppression. Kawaguchi et al. (24, 25) proposed that the lighter 

analyte ions are more susceptible to collision loss than the heavier ones in the presence of 

heavy matrix elements. 

Space Charge Effects 

Space charge effects exist in an ion beam with excess positive charge, where the 

charges on the ions repel each other to form space-charge-limited flow. Olivares and 

Houk (26) first noted that space charge could be important in the optics of their ICP-MS 

device, but they did not connect the space charge to the matrix effects. Gillson et al. (27) 

were the first to propose that the space charge effects within the skimmer change the flux 

and composition of the ion beam, which in turn is responsible for the matrix effects in the 

ICP-MS. Douglas and French (28) proposed that between the sampler and the skimmer, and 

at the entrance of the skimmer, the extracted gas beam is still neutral, so the flow of the gas 

can thus be treated as a plasma beam. Tanner (29) included space charge effects in a 

theoretical model to predict the ion trajectories behind the skimmer in ICP-MS. The results 
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showed that heavier elements with higher kinetic energies have higher transmission through 

the ion optics under the space-charge-limited flow, while lighter elements with lower kinetic 

energies are more susceptible to space charge repulsion and deviate from the center of the 

ion beam. Hence, light ions are transmitted less efficiently than heavy ions. 

Hieftje et al. (30-32) believe that the gas dynamic theory developed by Douglas and 

French (28) for a neutral beam is inadequate for ion beams in ICP-MS, based on the 

following considerations. 1) Langmuir probe measurements indicated that the collision 

frequency of the electron with the sampling cone is high enough to cause significant charge 

separation in the extracted plasma gas. 2) The theoretical optimal sampler-skimmer 

separation (33) produced the lowest ion sensitivities, where analyte ions are scattered by 

columbic repulsion. 3) Skimming the ions near the Mach disk resulted in much better 

sensitivity and reduced matrix effects. 

Tanner et al. (34, 35) recently described an ICP-MS device with a three-aperture 

vacuum interface. The results can be summarized as follows. 1) The device has a much 

lower total ion current than regular ICP-MS instruments yet still maintains similar sensitivity 

for analyte ions. 2) The beam entering the skimmer is still neutral. 3) The device has a more 

uniform ion signal response curve than most instruments. 4) More importantly, matrix effects 

are much less severe than with regular instruments. The success is believed to be due to the 

reduced ion current, hence a lower space charge effect. The formation of a shock wave in 

front of the third aperture facilitates matrix-free ion sampling. 
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Alleviation and Correction of Matrix Effects 

A successful and easy way of overcoming the matrix effects due to high 

concentrations of concomitant elements present in the solution is to dilute the samples such 

that the total matrix concentrations are less than 500-1000 fig ml"* (9, 36), provided that the 

analyte elements are still above the detection limits. Calibration using matrix matched 

standards is also a practical method of correction if the composition of the sample is known 

and high purity standards are available. The standard additions method (37-39) has been used 

as a traditional way of overcoming the matrix effects with some success in ICP-MS as well 

as in almost all techniques of spectroscopy. 

Optimization of Ion Optics 

It has been reported that matrix effects can be alleviated to some extent by optimizing 

the instrumental parameters, including forward power, gas flow rates (especially nebulizer 

gas flow rate), ion optical potentials, sampling position, and type of nebulizer. Wang and 

Caruso et al. (40, 41), and others (42) successfully used instrumental optimization to 

alleviate the matrix effects. Evans and Caruso (43) further used simplex optimization to 

select the ion lens conditions with zero matrix suppression with some success. They found 

that the extraction lens potential was the most critical factor. A small sampling orifice (0.4 

mm) resulted in very little matrix effect, although the sensitivity was also significantly 

reduced. Hu and Houk (44) optimized the ion lens potential to alleviate the matrix effects 

and maximize the ion signal. Chen and Houk (45) used Simion (a computer program) to 

study the ion trajectory in the second stage of an ICP-MS device (described in Chapter 3). 

They found that the matrix effects can be alleviated if the ion beam is brought into the ion 
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lens stack with a relatively broad profile, due to reduced ion density. The ion deposition 

experiments in Chap. 3 agree with their conclusion. Ross and Hiefg'e (46) were convinced 

that the ion-optical configuration can have a substantial influence on mass dependent matrix 

effects. They found that removing the second stage lenses in the ICP-MS eliminated the 

matrix effects. They further removed the photon stop and it didn't seem to affect the 

analytical performance of the system. Vaughan and Horlick (47) used MacSimion (a 

commercial computer program) to study the ion trajectories under the influence of ion optics 

without considering the space charge effects. The optimal conditions were dependent on the 

ion kinetic energies. They believe that the model can be used to predict relative signal 

intensities for a range of ion masses as a function of lens potentials and these are shown to 

agree with experimentally measured data. In a different theoretical model including space 

charge effects. Tanner (29) pointed out that increasing the ion energies by accelerating the 

ions after the skimmer can alleviate matrix effects. But he also pointed out that decelerating 

the ions before the quadrupole would once again induce space charge effects. 

Internal Standardization 

Internal standardization in ICP emission spectrometry to improve precision can be 

traced back to Bamett and Fassel (48, 49). It has been used in ICP-MS as a practical method 

of overcoming the matrix effects with some success, because in principle, the matrix element 

will affect the analyte ion(s) and the internal standard element(s) the same way if the internal 

standard is carefully chosen. Munro et al. (50) were the first to apply the technique in ICP-

MS. Thompson and Houk (11) suggested that the elements used as internal standards must 

closely match both the atomic weight and the ionization energy of the analyte elements. 
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Chapter 3 covers this topic and will give more reviews. 

Removal of Matrix Ions 

Perhaps the most satisfactory method to eliminate the matrix effects is to remove the 

matrix elements altogether. Li recent years the use of a chelating or ion exchange column 

to isolate and preconcentrate trace elements from matrices such as sea water has drawn 

considerable interest (51-58). Discussed here are the methods that can ultimately be used as 

on-line methods to remove matrix elements. 

Chelating resins Beauchemin and McLaren et al. (37, 59, 60), and later 

Orians (61) used sUica-immobilized 8-hydroxyquinoline to preconcentrate trace metals from 

sea water to remove the matrix interferences and improve the detection limits by up to 7-fold 

for several elements. Lyon et al. (62) used gel filtration to de-salt protein samples and 

removed CI, so "Se could be determined. Analysis of Au from sea water was done by 

preconcentration and sometimes flow injection technique (63-65). MiyazaM (66) used 

Chelex-100 to preconcentrate Pb to determine Pb isotope ratios and concentrations. 

Ion exchange Kawabata (67) used a cation exchange resin to separate and 

determine the rare earth elements. Ketterer (68) separated Re from the matrix elements Na, 

Mg, Al, K and Ca in ground water samples. An iminodiacetate-based chelating ion exchange 

column (Dionex Metpac CC-1) has been successfully used to isolate alkaline earths, first row 

transition metals and Pb from NaCl in sea water samples (55, 69). 

Chromatographic methods Chromatographic method hasbeen demonstrated 

able to separate trace analyte elements from the rest of the matrix elements, and to provide 

speciation information. Houk et al. (70-73) showed that As, Pb, Hg, Sn and Se can be 
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separated using reversed phase, ion exchange, ion-pairing and size exclusion chromatography 

methods. Caruso et al. (74-81) showed that the HPLC and supercritical fluid chromatography 

could be coupled with ICP-MS to separate organo-metal compounds, and to remove matrix 

elements. Braverman (82) separated rare earth elements using reversed phase HPLC. Vela 

and Caruso (83) reviewed the HPLC-ICP-MS for trace metal speciation. Hill (84) reviewed 

the coupling of HPLC with ICP-AES and ICP-MS. 

Other Instrumental Methods 

Only those methods that can be used on-line with ICP-MS to alleviate or remove the 

matrix effects are reviewed here. 

Hydride generation Hydride generation is a unique way of determining As, Se, Sn, 

Sb, Ge, Te, Pb, Bi, and elemental Hg in the presence of matrix in ICP-MS (85-96). The 

analyte elements in the gaseous hydride form are swept by Ar into the ICP-MS, thus they 

are isolated from the matrix. The advantages include high transport efficiency, good 

separation of analyte from the matrix and high recovery. 

Mixed gas plasmas Beauchemin et al. (97-99) found that adding N2 to the outer 

plasma gas flow can reduce the matrix suppression considerably. 

Dissertation Organization 

This dissertation consists of five parts: the general introduction, three papers 

submitted or to be submitted to scientific journals, and the general conclusion. Each paper 

has its own abstract, introduction, conclusion, acknowledgments, references. The tables and 

figures in the papers have their own numbering system. The references are formatted 

according to specifications of the corresponding journal. 
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The general introduction (the beginning of this section) gives a relatively detailed 

review over the recent research over the dissertation topic. 

The first paper has been submitted for publication to Journal of Analytical Atomic 

Spectrometry. The second paper has been submitted for publication to Spectrochimica Acta. 

The third paper is to be submitted to Journal of American Society of Mass Spectrometry. 
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2. POLYATOMIC IONS AS INTERNAL STANDARDS FOR MATRIX 

CORRECTIONS IN INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY 

A paper submitted to the Journal of Analytical Atomic Spectrometry 

Xiaoshan Chen and R. S. Houk 

ABSTRACT 

Several strong polyatomic ion signals common in inductively coupled plasma mass 

spectrometry (ICP-MS) can be used as ititemal standards to correct for matrix interferences. 

Signals for most of the polyatomic ions, including metal oxides, are suppressed by a Cs 

matrix to the same extent as analyte ion signals at nearby m/z values. Examples include 

"Nz"- and ^Mg+, ^sciioO"' and ^^Mn^, '«'Ar"'0+ and '̂Co^, and "^Sc^, ^Arz"" and 

"As"^, and '̂Y '̂O'̂  and '̂ Rh"^. The count rates for these polyatomic ions are often measured 

anyway to determine interference corrections for spectral overlap, so these signals should 

reduce the number of added elements necessary to correct for matrix interferences. 

INTRODUCTION 

Spectral interferences and matrix effects have been observed ever since the first 

publications describing ICP-MS'"' and have been summarized in several good reviews.*"''* 

Overlap between strong polyatomic ion signals and analyte ions complicates the 

determination of several important elements. Examples of these interferences include "Oa"^ 
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on 32S+, on on '̂'Se^, "Nj"- on '«'ArN+ on ^Fe+, 3Scii6o+ on 

"V+, on ^2cr+, and W'cr on '̂ As+, on and ^^S '̂̂ 02/^%* on 

•^Zn"^. The deleterious effects of polyatomic ion interferences are minimized by employing 

a) alternative methods of sample preparation (e.g. avoiding HCl, HCIO4 and H2SO4 in the 

final sample solution'̂ *'), b) separations during or before sample introduction (e.g., 

desolvation^*"^° or liquid chromatographic separations"), c) high resolution or d) 

correction procedures involving elemental equations. '̂ ^ 

In ICP-MS, the analyte signal also generally depends on both the concentration and 

the atomic weight of the matrix constituents. Usually, the analyte signal is suppressed by the 

matrix, and the suppression gets more severe as the concentration and the atomic weight of 

the matrix increases.'* Internal standardization is generally used to correct for this matrix 

effect. A variety of internal standard elements that span the m/z range are often 

employed,e.g., 'Be, ^®Co, "^In and 36 procedure requires multielement spikes 

and usually precludes determination of the spike elements in the original sample. 

As an alternative, if ions that are already present in the spectrum can be used as 

internal standards, fewer spike elements are necessary. McLaren and Beauchemin and co

workers found that and ''"Arz"^ served as reasonable internal standards for analysis of 

marine sediments. '̂̂ ^ This paper extends this concept to a variety of other polyatomic ions 

such as Nj"*", ArO"^, ClO"^, SO"^ and MO"^. The signals for these ions are often measured 

anyway to determine interference corrections. Why not use them as internal standards, as 

long as their signals are suppressed by the matrix to the same extent as that for analyte ions ? 
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EXPERIMENTAL SECTION 

Instrumentation 

The ICP-MS device used for this work was the ELAN 250 from Perkin-Elmer SCIEX 

(Thomhill, Ontario, Canada) with Fassel-type torch," upgraded ion optics, electronics and 

ELAN 5000 software. The nebulizer gas flow rate was regulated by a mass flow controller 

(Model 8200, Matheson Scientific, East Rutherford, NJ). The sample was introduced using 

an ultrasonic nebulizer (Model U-5000, CETAC Technologies, Omaha, NE). The operating 

conditions and the measuring parameters are listed in Table 1. 

Reagents 

The high purity acids (HNO3, H2SO4, HCl) and CSNO3 standard solution used were 

from GFS Chemicals (Columbus, OH). Other reagents used were from PLASMACHEM 

Associates, Inc. (Armingdale, NJ). The samples were diluted with high purity water (18 MQ-

cm resistivity) from a 5-stage Milli-Q Plus Water System (Millipore Corporation, Bedford, 

MA). 

Procedure 

The instrument was optimized by nebulizing a solution containing 100 ppb Li, Sc, 

Y, Cs and Bi and adjusting the torch position, ion lens voltage, and nebulizer flow rate to 

maximize all the ion signals. The acid blank and matrix blank solutions of cesium were all 

analyzed and no analyte ion was found. Then solutions containing one analyte ion with 

various concentrations of the matrix element cesium were analyzed. The parameter files were 

set up so that the strong signals of some polyatomic ions were recorded with a count rate 

close to or less than 10® cps to avoid errors due to nonlinearity of the detector. In each of 
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the three acid systems, single element standard solutions (1.5 fiM unless indicated otherwise) 

with various Cs matrix concentrations were nebulized, and signals from one polyatomic ion 

and the analyte ion were monitored. The analyte ions studied were selected so that their 

major isotopes yielded peaks at m/z values reasonably close to those for common polyatomic 

ions. 

Some metal oxide ions were also studied as possible internal standards at high m/z 

values. In this case, a solution of two metals (M and M') was added to provide the analyte 

(M"^) and the internal standard (M'O"^). For example, Tb"^ (m/z=159) was the analyte in one 

case, Ba was added to provide BaO"^, and the effect of cesium concentration on the signals 

for Tb^ and BaO"*" was measured. The concentrations of additives were chosen to provide 

proper count rates for the ions of interest. 

Cesium was used as the matrix element because it was easily ionized and had a 

relatively high atomic weight. The figures give the relative ion signals as functions of cesium 

concentration. The signal ratios of analyte ion to the internal standard are also given. 

Illustrative data representing both the best and the worst cases of agreement between the 

suppression of polyatomic ions and that of analyte ions were chosen for the figures. The ion 

signals of the internal standard and the analyte are compared in normalized scales for all the 

cases studied in Tables 2-4. The maximum signal of each ion is set to 100 for convenience. 
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RESULTS AND DISCUSSION 

Polyatomic ions from aqueous HNO^^ 

The polyatomic ions in the HNO3 solvent system include "Na"^, '*°Ar"N'̂ , '•"Ar"^, 

160^+^ 40^160+ and '"'Atj'̂ , which exist when any aqueous solution is nebulized. Nitric acid 

is therefore considered the first acid of choice in ICP-MS because the background is 

relatively simple and close to that of water alone. In this study, a series of 1.5 fiM standard 

solutions of Mg, Co, or As with various cesium matrix concentrations were studied, and one 

polyatomic ion and one analyte ion signal were monitored for each solution. Note that the 

50 ppm Cs solution nebulized with the ultrasonic nebulizer is more like a 500-1000 ppm Cs 

solution with a conventional pneumatic nebulizer, so that a more severe matrix effect is 

expected. 

The matrix effect for a typical polyatomic ion, is shown in Figure 1. 

Henceforth, we will simply use the symbol for an ion to mean the signal for that ion, to save 

space and avoid constant repetition of the term "signal for." Figure 1 shows that ^^As"*" and 

""Arz"^ are suppressed substantially by the Cs matrix, as expected. Both ions are suppressed 

to virtually the same extent, as shown previously for Arj"^ by Beauchemin et al.^' Table 

2 shows similar results for most of the other pairs of ions studied. The suppression induced 

by cesium is extensive but is very similar for ^Mg"^ and and for '̂Co'*' and '"'Ar"0'̂ . 

These three pairs of ions should serve as good internal standards for each other. As 

expected, lighter ions like ^Mg"^ are suppressed more extensively than heavier ions like 

40A]-2+ 38.39 

Table 2 and Figure 2 also show that is suppressed much more extensively than 
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"Oz"*", so is not an effective internal standard ion for Of the various sets of ions 

studied, this pair showed the poorest agreement in suppression behavior. Possible reasons 

for the anomalous behavior of ^Mg^ and are described in the discussion section. 

Polyatomic ions from aqueous H7S0^ and HQ 

These acids contribute a variety of polyatomic ions, including 

325160+, 3231602+, 35Qi4j^+^ 35q^+^ 3SQ160+, 3Sq16oh+ and '"'Ai^scr, in addition to 

the other ions common firom aqueous solutions. The acid concentrations were chosen to 

restrict the polyatomic ions to convenient levels. The solution analyzed were a) Sc and Cu 

in 0.1% H2SO4 and 1% HNO3, and b) Mn in 0.5%HC1 and 0.5% HNO3. 

The results are listed in Table 3. Sc"*" and Cu"*" showed very similar suppression 

effects as SO"^ and S02'̂ /S2"^, respectively, and gave plots very similar to Figure 1, relative 

to the precision (~2% RSD) of each signal measurement. The signal for ClO"^ was 

suppressed somewhat more extensively than that for Mn"^. 

M^O+ ions from aqueous HNO-^ 

The polyatomic ions tested previously occur below m/z=80. However, the magnitude 

of the matrix effect usually depends on the atomic weight of the analyte.^*- '̂ Several internal 

standards that span the m/z range are commonly used for multielement analysis.^- For 

these reasons, the effects of cesium matrix on "'̂ Sc^O'̂ , "^Ba^O"*", '®'Tm'*'0'̂ , and 

184^160+ are reported to evaluate these ions as possible internal standards. These M'O"^ ions 

are formed by adding salts containing the metal M' to aqueous 1 % HNO3. These solutions 

also contain the analyte element M at an appropriate concentration. 

The results are summarized in Figures 3 and 4 and Table 4. Two general types of 
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behavior are seen. The oxide ion and the analyte ion are suppressed to the same extent in 

the following cases: ^Cu"^ and ""Rh"^ and and '"Tm^O"^. In the 

worst case for these three pairs, the relative signal for Cu"*" is different from that for ScO"^ 

by 11% at a Cs concentration of 2 ppm. This sort of agreement in suppression behavior is 

similar to that seen when atomic ions of different element are used as internal standards'-''®. 

It is, of course, poorer agreement than that seen for isotope dilution measurements. On the 

other extreme, Table 4 shows that "^Ba^O"^ and '84^i6q+ suppressed more extensively 

than and ^"^Tl"^, respectively. 

Effect of ionization energy on suppression behavior 

Ionization energy (IE) for the neutral analogues of most of the ions studied are given 

in Table 5. For ArO"^ and Ar2*', estimates of the total internal energy of the ground state of 

the ion are given instead, as the neutral molecules ArO and Ar2 are not stable enough for 

their lEs to be measured directly. 

The observed suppression behavior is related to the IE of the ions involved in the 

following ways. The ions are arranged in four groups in Table 5. In the first group, the 

polyatomic ions are either background ions from the plasma (ArO"^, Arj"*") or oxides of 

nonmetallic elements like SO"^ or ClO"^. In these cases, the IE of the polyatomic species is 

much higher than that of the metal, and both polyatomic ion and metal ion are suppressed 

similarly by the cesium matrix. The second group consists of the metal oxides ScO"^, YO"^ 

and TmO"^, which have lower ioni2ation energies than the analyte and are suppressed the 

same as their respective analytes. The lEs of all these ions are below 8 eV, so they should 

all be efficiently ionized in the plasma. However, the metal oxides BaO and WO have higher 
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ionization energies than the analytes, and BaO"*" and WO"^ are suppressed more extensively 

than the analytes, even though the IE of BaO is only 6.91 eV. This behavior is opposite to 

that seen for the nonmetal polyatomic ions in the first group (N2'̂ , SO"*", etc.), for reasons 

that are not clear. The last group consists only of '"02"^, which is suppressed much less 

extensively than ^Mg"^. In this case, the m/z difference may be too large, and the trajectories 

of Mg"^ and 02"^ through the ion lenses may be affected differently by the space charge 

induced by the matrix ion."* 

Effect of desolvation 

The observation that many oxide ions are suppressed to the same extent as nearby 

analyte ions is surprising in view of recent studies by Tanner, who showed that oxide ions 

have kinetic energies that are about 1 eV lower than those of nearby atomic ions. Ions with 

lower kinetic energy are deflected more extensively by the space charge effect and tend to 

be lost more severely when matrix ions are present."*^ The lower kinetic energies for M'O^ 

are attributed to formation of these species mainly in the cool regions surrounding wet 

droplets."*^ In the present work, the wet aerosol is desolvated, which removes the wet 

droplets.'* '̂ Injecting the sample as dry aerosol particles could therefore account for the 

unexpected similarity in the matrix effects for analyte ions and oxide ions. 

CONCLUSION 

Most of the polyatomic ions studied should serve as reasonable internal standards. 

Atomic ions from Sc, Y, and Tm are common internal standards, and their oxide ions could 

be used as well. The most likely scenario for use of CIO"*", SO"^ and S02'*" would be for the 
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analysis of a) aqueous HCl, HCIO4 or H2SO4 or b) solid samples that require these acids for 

dissolution. In this latter case, either the original solid should not contain appreciable S or 

CI, or the S and CI content in the sample should be measured separately. Evaluation of the 

utility of this concept by analysis of standard reference materials is currently underway in 

our laboratory, as are further studies into the fundamental reasons for the apparent 

dependence of suppression behavior on the ionization energies of analyte and oxide ions. 
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Torch 

RF power 

Reflected power 

Plasma gas flow rate 

Nebulizer gas flow rate 

Auxiliary gas flow rate 

Sampler 

Skimmer 

Sample uptake rate 

Nebulizer type 

Heating/Desolvation temperature 

Measurement parameters for polyatomic ions 

Resolution mode High 

Number of measurements per peak 17 

Fassel type^ 

1.3 kW 

^ 2 W 

14 L/min 

1.25 L/min 

0.4 L/min 

Nickel, 1.14 mm orifice diameter 

Nickel, 0.89 mm orifice diameter 

1.3 ml/min 

CETAC U-5000 (current setting = 5 Amp) 

140''C/-2°C 
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Table 2. Comparison of signals for analyte metal ions and polyatomic ions as internal 
standards with cesium as matrix element in HNO3 

Analyte ion Polyatomic ion [Cs] 
ppm 

Relative signal 

Analyte ion Polyatomic ion 

^Mg"^ 0 100 100 

(L5/tM) 2 64 71 

5 40 45 

10 18 16 

50 2.4 2.0 

24Mg+ 0 100 100 

(l.5nM) 2 62 93 

5 39 79 

10 20 54 

50 2.0 3.2 

®'Co+ 0 100 100 

(1.5MM) 2 87 84 

5 72 70 

10 38 37 

50 7.0 7.0 
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Analyte ion Polyatomic ion 

(1.5mM) 

[Cs] Relative signal 
ppm 

Analyte ion Polyatomic ion 

0 100 100 

2 78 79 

5 74 77 

10 37 38 

50 10 12 
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Table 3. Comparison of signals for analyte metal ions and polyatomic ions as internal 
standards with cesium as matrix element in H2SO4 or HCl 

Analyte ion Polyatomic ion [Cs] Relative signal 
ppm 

Analyte ion Polyatomic ion 

325160+ 0 100 100 

(1.5/iM) 2 81 80 

5 69 64 

10 39 39 

50 8.7 8.0 

®Cu"  ̂ 0 100 100 

(1.5/iM) 2 77 83 

5 63 68 

10 35 37 

50 5.0 5.3 

5^Mn+ 35Q160+ 0 100 100 

(L5/iM) 2 72 60 

5 57 49 

10 30 24 

50 2.5 2.0 



www.manaraa.com

35 

* High resolution measurements indicate both these ions are significant firom H2SO4 at 

m/z=64. 
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Table 4. Comparison of signals for analyte metal ions and metal monoxide ions as internal 
standards with cesium as matrix element in HNO3 

M'0+ [Cs] Relative signal 
ppm 

M+ M'0+ 

^Cu"^ 0 100 100 

(0.2/iM) (Sc 200ppb) 2 80 87 

5 60 67 

10 30 33 

20 10 11 

50 1.4 1.5 

l(BRh+ 89Y16Q+ 0 100 100 

(0.2nM) (Y 200ppb) 2 85 85 

5 63 61 

10 31 28 

20 8.3 7.9 

50 0.7 0.7 

i5>rb+ 0 100 100 

(l.OfiM) (Ba 4 ppm) 2 88 75 

5 77 50 

10 46 27 
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Table 4. Continued. 

M'O  ̂ [Cs] Relative signal 
ppm 

M'O  ̂

is>rb+ 20 12 5.8 

50 0.4 0.1 

i8iTa+ i6?j.mi6o+ 0 100 100 

(0.6/iM) (Tm Ippm) 2 66 71 

5 49 51 

10 20 23 

20 8 9 

50 0.6 0.6 

205<pj+ 184^^160+ 0 100 100 

(2.0/iM) (W 4ppm) 2 88 70 

5 74 52 

10 39 29 

20 15 12 

50 1.3 L2 
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Table 5. Ionization energies of metal atoms and neutral polyatomic molecules studied"*'̂ ^ 

Metal 
Species 

IE(eV) 
(eV) 

Polyatomic 
Species 

m 
(eV) 

Suppressed 
the Same? 

Mg 7.65 15.58 yes 

Sc 6.54 SO 10.3 yes 

Mn 7.44 CIO 11.1 yes 

Co 7.86 ArO -13* yes 

Cu 7.73 SO2 12.32 yes 

S2 9.36 yes 

As 9.81 Ar2 14.7» yes 

Cu 7.73 ScO 6.6 yes 

Rh 7.46 YO 5.85 yes 

Ta 7.40 TmO 6.44 yes 

Tb 5.86 BaO 6.91 no 

T1 6.11 WO 9.1 no 

Mg 7.65 O2 12.06 no 

* The values listed are the estimated total internal energies for Arj"^ and 
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Cs Conc.(ppm) 

Figure 1. as internal standard for '̂ As"*". 
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1% HNO 

Cs Cone, (ppm) 

Figure 2. "Oz"*" as internal standard for ^Mg"*". 
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3, SPATIALLY RESOLVED MEASUREMENTS OF ION DENSITY BEHIND THE 

SKIMMER OF AN INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER 

A paper submitted to Spectrochimica Acta 

Xiaoshan Chen and R. S. Houk 

ABSTRACT 

Ions are extracted from the ICP through a conventional sampler and skimmer and 

then deposited on an array of graphite targets at the exit of a set of electrostatic ion lenses. 

Scandium ion signal is enhanced by choosing appropriate potentials on the ion lenses. The 

Sc"^ ion signal is suppressed by the presence of concomitant Cs ions at high concentrations. 

Comparisons of grounded ion lenses and two different ion lens potential settings were made. 

The signal is enhanced more extensively by the ion lenses when there are no concentrated 

concomitant ions. This study indicates that matrix effects in ICP-MS could possibly be 

alleviated by choosing ion lens potentials such that the ions enter the ion optics with a 

relatively broad beam cross section; the beam then focused to a smaller size. A photon stop 

inside the ion lens stack reduces ion transmission and changes the shape of the beam profile 

from conical to bimodal. 
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1. INTRODUCTION 

The detection limits of ICP-MS based on quadnipole instruments are no better than 

1X lO** atoms[l]. It is believed that the ions are lost in the ion extraction process in the 

sampling interface of the ICP-MS, as well as to the ion lenses and the quadnipole analyzer. 

In addition, analyte signals are suppressed when solutions containing highly concentrated 

matrices are nebulized[2-42], especially for light analyte ions and heavy matrix ions. In 

general, the sensitivity of ICP-MS is poorer for light analytes (e.g., Li"^) than for heavy ones 

such as U"^. This mass bias problem complicates internal standardization and general 

calibration of sensitivity for a variety of elements using standards for only a few. 

These matrix interferences are generally attributed largely to space charge effects[17], 

which probably also contribute to mass bias and low overall ion transmission. The free 

charge in a particle beam is called space charge since it exists in free space. Space charge 

forces have been described[43] as mutual electrostatic repulsion among particles of like 

charge, if particles of the opposite charge are not present in approximately equal 

concentrations. Therefore, the space charge effect in a neutral plasma is not significant. 

Olivares and Houk [44] first pointed out that space charge effects may be an important factor 

in ion extraction in ICP-MS. They and Gillson et a/[17] postulated that the ion beam behind 

the skimmer is space charge limited, i.e. it reaches an ion density so high that mutual 

repulsion defocuses the ions. The space charge problem also accounts for the observed 

dependence of matrix effects on the atomic weights of the analyte and the matrix elements. 

The expansion of the plasma through the ICP-MS interface has been described by two 

models. Douglas and French[45] proposed that the process is like a neutral gas expansion. 



www.manaraa.com

45 

where the maximum beam angle sampled through the skimmer is defined by the diameter 

of the skimmer orifice and the sampler-skimmer q)acing. Another model by Chambers and 

Hief^e[27-29] states that significant charge separation occurs between the sampler and the 

skimmer. In this case, the ion entry angle would be much larger than predicted for the 

neutral beam. Tanner and co-workers[41, 46] have recently rqwrted that comparable 

sensitivity, less mass bias and matrix effects cm be achieved by adding a third aperture 

behind the sMmmer to reduce the total ion current by a factor of about 600. 

A spatially-resolved profile of the density of q)ecific ions behind the skimmer could 

provide direct information about space charge effects. In this study, such information is 

provided by spatially-resolved ion deposition, in which ions are accelerated and implanted 

into a solid. Ion deposition is used to introduce impurities into solids in a uniform and 

reliable way to change the properties of the solid material. It is a widespread surface 

modification technique in semiconductor technology [47-49]. Thin films of refractory 

materials have been made using an ICP combined with an extraction device like that used 

in ICP-MS[50]. Preliminary aspects of the present work have been described previously[51, 

52], as have similar experiments by Famsworth's group[53]. First, we describe the salient 

aspects of ion extraction to provide the reader with some basic information for evaluation 

of the results presented later. 
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2. ION SAMPLING PROCESS 

2.1 Gas and Ion Flow Behind the Skimmer 

The Ar atom number density in the central channel of an atmospheric pressure ICP 

is approximately 1.5x10" cm"' at 1 atm and 5000 K. At the usual sampling position, the 

electron density is about 1.5x10" cm"', and so is the total ion density. We assume the 

sampler diameter is 1.14 mm, the skimmer diameter is 0.89 mm, and the sampler-skimmer 

separation is 7.0 mm, which are typical parameters for an ELAN ICP-MS, Under these 

conditions, the gas flow rate through the skimmer at 152 K is about 1X10" atoms s*' or 

1X10" Ar"^ s"', which is about 2,6% of the central flow in the ICP[45]. Theoretically, the 

total ion current through the skimmer should then be about 1.5 mA. However, the measured 

total ion current at the base of the skimmer[17] is only about 6 /zA. This measured ion 

current corresponds to loss of over 99% of the ions during the extraction process[17, 27-29, 

35, 41, 46]. 

The loss of analyte ions can also be estimated by a similar line of reasoning. For a 

1 ppm Y solution with uptake rate of 1 ml/min and aerosol gas flow rate of 1 1 min'̂  

assuming 2% nebulization and transport efficiency (for a typical pneumatic nebulizer) and 

100% atomization-ionization efficiency, the Y"^ density in the central channel is 8x10' Y^ 

ions cm'̂ [3], which is 5.4 ppm of the total ion density in the ICP. Assuming the ratio 

(nY+/nAr+) remains constant in the flow through the sampler and the skimmer, theoretically 

there should be 5.2 x 10'° Y"^ ions s'* leaving the skimmer for the 1 ppm Y solution. Taking 

the sensitivity of an ICP-MS of about 1 x 10' ions s"' ppm"', the ion transmission efficiency 

from the skimmer to the detector of an ICP-MS is about 0.02%. Considering the skimmer 
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passes only 2.6% of the central flow of the ICP, the overall efficiency of the ICP-MS is 

about 5 X10^. In other words, for every 10® analyte ions in the central channel of the ICP, 

only 5 ions reach the detector of the ICP-MS. This estimate is in good agreement with other 

studies[l, 54]. 

It is crucial therefore to understand how the ions are lost in the ion extraction process 

before the ion transmission efficiency can be increased. Tanner et a/[46] recently reported 

a modified three-aperture ICP-MS interface with normal ion optics and quadrupole mass 

analyzer. The transmission efficiency from the reducer to the detector is about 7%, which 

includes the ion optics, the mass analyzer and the detector. This 1% value can be viewed as 

an efficiency factor that reflects the ion transmission through the ion optics in the third 

chamber and mass analyzer to the detector. Since the plasma gas flow is reduced to the order 

of the space-charge-limited flow, the transmission through the ion optics and thereafter can 

be evaluated separately. 

The 7% transmission value seen for the three-aperture device is much better than the 

0.02% value calculated above for a conventional two-aperture ICP-MS device. This 

comparison shows that many ions are lost between the skimmer tip and the ion optics, or 

inside the ion optics in the second vacuum chamber. As has been pointed out by Tanner et 

a/[41,46], the plasma flow through the sampler and the skimmer is still neutral, and the flux 

(atoms s"' cm'̂  through the skimmer decreases as the square of the distance downstream 

from the sampler tip. Therefore, the gas flux fj at position Zj, downstream from the sampler 

is: 
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where fi is the gas flux at position Zj. Taking the flow rate at the tip of the skimmer to be 

1X10*' s'S the corresponding ion current of 1500 fiA, the first ion lens position at 50 mm 

downstream from the skimmer tip (57 mm downstream of the sampler), the flux at the 

entrance of the ion lens becomes only 1.5% of that at the skimmer tip. Therefore, the loss 

of ions behind the skimmer is first of all due to the rarefaction of the beam as it travels 

farther from the skimmer tip. 

It has been shown that the ion signals increase when the entrance to the ion optics is 

positioned closer to the skimmer[55]. For example, the shallow, sharply pointed skimmers 

in recent use in several devices can provide substantial improvements in ion signals by 

allowing the first lens to be inserted close to the skimmer tip[56]. It is therefore crucial that 

the distance between the skimmer tip and the ion optics be minimized in order to increase 

the ion transmission efficiency for the stage between the skimmer and the ion optics. 

After the ions pass through the skimmer, there are two factors that can induce the 

charge separation and affect the ion transmission. Langmuir probe measurements of the 

electron temperature and electron density show that with no voltages applied to the ion 

optics, the Debye length Xp can be as large as 2 mm[57I when the beam reaches 40 mm 

behind the skimmer tip. This value of Xd is significant compared to the overall size of the 

beam and the dimensions of the lens, so the electrons tend to diffuse from the beam, and a 

net positive charge density remains along the centerline of the beam. Thus, significant charge 
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separation can occur in the beam, even when the ion lenses are kept at ground potential. 

Tanner et aZ[41, 46] recently reported that Xd at the skimmer was 3 x 10'̂  mm, while at the 

tip of the reducer, which was positioned at about 1/3 of the skimmer length, Xq was 6x 10" 

^mm. This is also an indication of the rapid increase in Debye length as ions leave the 

skimmer tip. Usually, the voltage applied to the first ion lens is negative, so this lens also 

repels electrons and attracts ions. Thus, the lens direcfly separates different charges. Once 

the neutrality of the beam is destroyed, the flow of ions is governed by the space-charge-

limited flow. 

2.2 Space-Charge-Limited Flow 

The positive charge carried by the particles in a positive ion beam causes the space 

charge force in the beam. There are three important effects caused by the space charge force 

in such an ion beam[58, 59]: a) depression of the potential in the beam; b) beam spreading; 

and c) limitation to the maximum current. 

The significance of the space charge in a particle beam can be described quantitatively 

using the perveance, P, which is defined as follows: 

P = — (2) 
y3l2  ̂' 

where I is the total current in amps and V is the accelerating potential in volts. Perveance 

P is characteristic of an ion extraction system and as will be seen in Eq. 6, it depends only 

on the geometry of the extractor (D/L) and the type of the particle (mioo)[60]. For a beam 

of singly charged positive ions with negligible space charge effect, the quantity P must 

satisfy the relation[59]: 
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P < iQ-g { ^ f 2 (3) 

For Ar ions, the maximum perveance without significant space charge effect is 

3.7X10'". In the second stage of an ICP-MS device, an ion beam with total current of 6 

and -10 V potential gives a P value of 1.9 x 10"', which exceeds the maximum perveance by 

a factor of over 5000. 

The space-charge-limited maximum electron current that can be focused through a 

tube with diameter D and length L is: 

3 

• 38-6X10"' < f l' 

where V is the accelerating voltage, D the tube diameter and L the tube length. The 

maximum ion current is related to the maximum electron current in the following way[60]: 

^2" = { ^ }2 = 0.0234 { P (5) 
h "'ion "'ion 

wherez = charge on ion (+1, +2,..., or-1,...). Therefore the space-charge-limited current 

flow through a tube is; 

4^ ' 9-04x10-' ( ^ ( £ f (6) 
ion 

If the ion beam is 10 mm in diameter (measured beam width at the target) and 27 mm long 

(i. e., the overall length of the ion lenses), the D/L ratio is 0.37. Using an average ion lens 
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potential of -50 V, Eq. 6 gives the Y ion current of about 4.6 /lA at the target, which agrees 
c 

well with the measured ion current. Thus, the ion beam extracted through the lenses is space 

charge limited. 

There is an error in Gillson's paper[17] in Equation 6 where (m/z)"^ was used instead 

of (z/m)"^. The error has been quoted in some other papers, including our own[61]. For an 

ion energy of 3 eV for Ar, and the D/L ratio of 0.5 for the skimmer, the calculated Ar"^ ion 

current should have been 0.18 fiA, rather than the 6 piA measured at the base of the 

skimmer. 

In summary, beam spreading due to the increase in Debye radius, preferential loss 

of electrons and the subsequent buildup of space charge under the influence of the ion optics 

causes the loss of ions in this stage. The remainder of this paper describes experimental 

efforts to measure some of these effects. 

3. EXPERIMENTAL SECTION 

3,1 Instrumentation 

The ion deposition experiment was performed using a commercial ICP RF generator 

(Model HPS 3000D, Plasma-Therm, Inc, now RF Plasma Products, Kresson, NJ). The ICP 

torch was turned to the horizontal orientation usual in ICP-MS. The load coil was grounded 

at the turn farthest downstream, as shown in Figure 2X of ref. 62. The elements to be 

deposited were introduced into the ICP by a concentric nebulizer (Meinhard TR30-C3) with 

a Scott type spray chamber[63] and desolvation system[64]. The plasma operating conditions 

are listed in Table 1. The power, aerosol gas flow rate, and sampling position approximate 
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those used for analysis if this device were configured as a mass spectrometer. The skimmer 

orifice was enlarged to 1.59 mm diam. to increase the ion transmission[55]. 

The vacuum chamber, including the sampler and skimmer interface, has been 

described[65] and is illustrated in Figure 1. The chamber is pumped by a diffusion pump 

with a cryotrap (Models VHS-6 and 362-6, Varian Vacuum Products, Lexington, MA). The 

interface is pumped by a mechanical pump (Model 1397 DUO-SEAL, W. M. Welch 

Manufacturing Company, Chicago, XL). 

3.2 Targets for Ion Deposition 

A variety of target materials were tested for ion deposition. Compared to metal 

electrodes, high density graphite ones were inexpensive, available in sufficient purity, and 

most importantly, insoluble in aqueous HNO3. The diameter of the electrodes was also a 

consideration. Electrodes with larger diameters were more readily available and had larger 

cross sections for deposition but provided poorer spatial resolution for a small ion beam. We 

found that 1.59 mm (1/16 in.) diameter electrodes gave adequate spatial resolution with 

sufficient cross section. The flat top graphite electrodes (Ultra Carbon Corp., Bay City, MI) 

used were of high density SPK grade and high "F" purity. They were mounted horizontally 

on a stainless steel clamp (Fig. 1), which was water cooled and extended through an 

electrical feedthrough to a high voltage power supply. These graphite electrodes were packed 

in an array immediately next to each other so that little ion signal was lost to the gaps 

between the electrodes. Between the graphite electrode and the ion optics there was a 

stainless steel grid (304 stainless steel, mesh 24, 67% transparent) to shield the ions inside 

the lens from the high voltage on the targets. The grid was connected to the last ion lens to 
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provide a uniform electrical potential for the exiting ions. 

Yttrium ions were also deposited on a Ni grid as an alternative target. The grid was 

a piece of pure Ni wire cloth (Newark Wire Cloth, Newark, NJ), with diameter of 25.4 mm, 

33.6% transparency and grid size of 0.127 mm. The deposition process was the same as for 

the graphite target. The deposits were then analyzed with a scanning electron microscope 

(Model JSM-840A, JEOL, Japan) and an energy dispersive X-ray analyzer (Model Delta V, 

Kevex X-ray Inc., Scott Valley, CA). These results are also discussed in the following 

section. 

3.3 Procedure 

The sampling position and aerosol gas flow rate were chosen so that the sampler was 

~ 1 mm downstream from the initial radiation zone (IRZ)[66] when a concentrated yttrium 

solution was introduced into the plasma. This position mimicked the sampling position that 

usually provides maximum ion signal in ICP-MS. The ions passed through the sampler, 

skimmer, the ion lenses and the grid and were then deposited onto the graphite electrodes 

at a kinetic energy of ~ 1000 eV. The electrodes were exposed to the ion beam for 60 

minutes in each run. Then the vacuum chamber was vented and opened and the targets were 

removed from the back. The ICP was kept on and in position up against the sampler so that 

the plasma conditions and the sampling position remained the same. A new array of targets 

was inserted and the chamber was evacuated again in preparation for a new deposition 

experiment. Keeping the plasma on while the targets were changed improved reproducibility 

and reliability and allowed comparison of results between successive deposition experiments. 

Meanwhile, each exposed graphite electrode was removed and placed overnight in a 
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separate polyethylene bottle containing 5 ml of aqueous 1 % HNO3. Only the end containing 

the deposit was exposed to the acid. This procedure yielded a set of solutions of the 

deposited metal at various concentrations related to the total amount deposited on each target. 

The deposited metals in the resulting solutions were measured with a different ICP-

MS (ELAN 250, Perkin-Elmer SCIEX, Thomhill, ON, Canada) with Fassel-type torch [63], 

upgraded ion optics, electronics and ELAN 5000 software. The nebulizer gas flow rate was 

regulated by a mass flow controller (Model 8200, Matheson Scientific, East Rutherford, NJ). 

The sample was introduced using an ultrasonic nebulizer (Model U-5000, CETAC 

Technologies, Omaha, NE). The deposited ion signals were then plotted against the radial 

distance from the central axis through the sampler and skimmer. Each point represents a 

separate measurement on an individual electrode. The total ion current collected on the target 

was measured with a picoammeter (Model 485, Keithley Instruments, Cleveland, OH). 

Matrix effects from co-deposited Cs in the solutions were not severe because the Cs count 

rates on the ELAN ICP-MS device were only ~ 10* counts s"' from the solutions produced 

when 1000 ppm Cs was used in the deposition step. Several of the electrodes were treated 

a second time with aqueous 1 %HN03. No additional Sc or Y was present in these second 

batches of solution, so the recovery of the deposited metal was complete after one dissolution 

treatment. 

3.4 Reagents 

The HNO3 was Ultrex n Ultrapure acid from J. T. Baker (Phillipsburg, N]). The 

CsNOa was a Speq)ure ICP standard from Alfa Johnson Matthey (Columbus, OH). Other 

reagents used were from PLASMACHEM Associates, Inc (Armingdale, NJ). The samples 
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were diluted with high purity water (18 MQ-cm resistivity) from a 5-stage Milli-Q Plus 

Water System (Millipore Corporation, Bedford, MA). Scandium and yttrium were chosen 

to avoid contamination, since they are not common impurity elements, and they were absent 

originally in the graphite electrodes. 

4. RESULTS AND DISCUSSION 

4.1 Ion Trajectory Simulations 

Ion trajectories were simulated with SIMION PC 4.02 (Idaho National Engineering 

Laboratory, Idaho Falls, ID). The simulation gives the ion trajectories inside the vacuum 

chamber under the influence of an electrostatic field provided by the ion optics without 

considering mutual repulsions between the ions. Trajectory simulations without such space 

charge effects still provide some guidance for the optimal ion lens settings to focus the ion 

beam. The ICP-MS interface and ion lenses used in the simulation closely resemble the 

corresponding components used for the experimental studies. 

Ion trajectories with the optimal ion lens potential settings are shown in Figures 2 -

6. Voltages corresponding to three different lens settings are given in Table 2. The ion initial 

kinetic energy in these simulations was set at 4.6 eV, which simulated the measured kinetic 

energy of Y"^ for a similar plasma and interface[55]. Scandium ion has a slightly lower 

kinetic energy (4.0 eV) and slightly different ion trajectories. The divergence angle was 

stepped between 0° and 4°, which was based on the sampling orifice-skimmer orifice 

separation and the skimmer orifice diameter. 

Figure 2 shows the ion trajectories when all the ion lenses and the grid were set at 
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ground potential. In the absence of space charge, the ions should travel linearly through such 

a field-free region, just as expected from a free jet expansion. In this case, the ions should 

reach the target electrodes in a beam ~ 15 mm wide. Figure 3 is a side view version of the 

simulation in Figure 2. If the beam leaving the lens is broad, some of the ions may be 

deposited on the sides of the graphite targets, rather than onto the ends of the targets. This 

phenomenon could affect the spatial resolution of the deposition experiment, since the ions 

measured on any single target could come from a relatively wide area of the beam. 

Therefore, the spatial profiles described subsequently should be considered to be only 

laterally resolved, not radially resolved. 

The ion trajectories for three different sets of lens voltages were also simulated. The 

voltages used are described by Setting 1, 2, or 3 in Table 2 and are selected to resemble 

voltages that allow reasonable ion transmission through the lens, based on our experience 

with similar ICP-MS instiiiments. We should point out that adjusting the lens voltages to 

maximize ion transmission is difficult in this experiment, because there is no mass 

spectrometer to monitor the ion beam in real time. Thus, we did not optimize the lens 

voltages to actually maximize ion deposition on the targets, as such a procedure would 

require too many separate deposition experiments. We did adjust plasma conditions (i.e., 

aerosol gas flow rate and sampling position) such that the tip of the initial radiation zone for 

yttrium was — 1 mm upstream from the sampler, which generally yields maximum ion 

signal in most ICP-MS devices. 

Figure 4 shows the simulated trajectories when the ion lenses were set at -110 V, -40 

V and -50 V. The ion beam should now be focused tightly and should strike only the center 
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electrode. Figure 5 shows the simulation when the ion lenses were set at 2 V, -50 V and -60 

V. The ion beam with this lens setting has a different pattern from the one in Figure 4. The 

ion beam is not tightly focused in the beginning, resulting in an expansion-contraction 

trajectory. The beam then reaches the target with a small cross section. Figure 6 shows the 

ion trajectory with a photon stop in the center of the second ion lens. The potentials on the 

ion lenses were chosen to maximize transmission of ions around the photon stop while still 

focussing the beam to a central point at the target array. 

4.2 Ion Deposition Results 

4.2.1 Ion Intensity and Ion Beam Profile. In this study Li, Sc, Y, and Cs 

were deposited separately on the graphite electrodes. Analysis of the targets shows that the 

deposition efficiency varies among different ions. Only trace amounts of lithium are found 

on the targets. The transmission and sensitivity for Li"*" are poor in most ICP-MS 

devices[67]. Cesium is deposited at higher concentrations than Li but with much less 

efficiency and a much broader spatial distribution than is the case for Sc or Y. Perhaps the 

target is hot enough to vaporize Cs even with water cooling. Scandium and yttrium are 

therefore used as analytes in subsequent experiments. 

First, we investigated the possibility of depositing unvaporized solid particles from 

the plasma. For a 60 minute deposition of 50 ppm Sc solution with the targets grounded, the 

deposited Sc is negligible. Therefore, neutral solid particles do not contribute to the 

deposition process. The bulk of the deposited scandium probably comes firom atomic Sc"^ 

ions. However, positively charged solid particulates that are not fiilly vaporized by the 

plasma could also be deposited under the conditions used. These charged particulates cannot 
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be distinguish easily from atomic Sc"^ by changing the target voltage. The desolvation 

process should have removed wet droplets[68]. 

First, we describe some general features of the deposition results. First, as can be 

seen in Figure 7, when the ion lenses are grounded the ion beam profile is similar to that 

predicted by SIMION (Figure 2). If the ions travel linearly from the center point at the 

sampler tip through the skimmer until they hit the grid, the beam width should be 15 mm 

at the targets, while the measured beam widths are 10 to 13 mm. The smaller measured 

values for beam width could simply mean there are too few ions in the outer fringes of the 

beam to be detected readily. Secondly, the ion beam is only moderately narrower when the 

potentials on the ion lenses are applied, and the different lens settings do not change the 

beam width appreciably. It is unclear whether the ion beam never reaches the focal point or 

the ion beam starts diverging from the focal point before reaching the targets. Another 

possibility is that a shock wave forms when the neutral beam hits the targets[35, 41, 46]. 

Such a shock wave would spread the ions among various targets. The targets, however, are 

some 90 mm behind the skimmer tip, and any shock wave so far from the skimmer would 

be weak and diffuse [69]. 

The effects of ion lens potentials on the transmission efficiency of Sc"^ ions are also 

shown in Figure 7. When nonzero potentials are applied to the ion lenses for either ion lens 

setting 1 or 2, the ion beam intensity is greater than when the lenses are grounded by a 

factor of two. Obviously, the electric field on the ion lenses extracts the Sc"^ ions and 

enhances the Sc"^ ion transmission through the ion optics. This observation indicates that the 

ion lens does help ion transmission, in contrast to the results described by Ross et a/.[31]. 
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Note that ions are transmitted with the first lens either strongly negative (-110 V, 

Setting 1) or slightly positive (+2 V, Setting 2), with the other lens voltages adjusted 

accordingly. This duality of possible voltages for the first lens has a close commonality with 

ICP-MS practice. Setting 1 (i.e., the first lens is negative) is analogous to the lens settings 

traditionally used with quadrupole ICP-MS devices, while Setting 2 is similar to that used 

in the new ELAN 6000 instrument from Perkin-Elmer SCIEX [70] and also in our device 

with an offset ion lens [37]. 

4.2.2 Recovery of Ions. As calculated earlier, the theoretical ion flow through 

the skimmer of a Sciex ICP-MS is 5.2x10*° Y"*" ions s"' per ppm Y in the ICP. Correcting 

this number for our larger skimmer orifice and bigger sampler-skimmer spacing, the ion flow 

should be 9.1x10'° Y"^ ions s"' per ppm Y. The gas flow is estimated to be 4.5% of the 

central flow of the plasma. 

Therefore, 2.4 pig of Y should be collected on all the electrodes for a 60 minute 

deposition. Actually, a total of only 0.3 to 0.4 ng of Y is present in the solutions (see Figure 

13), corresponding to an Y"^ ion current of 0.1-0.13 /tA and a recovery of about 14% of the 

Y"^ leaving the skimmer. The total current measured is about 4 /iA, so the Y"^ ion current 

is 2.5% of the total current passing the ion optics, which is much bigger than the 

ion ratio in the plasma. This enrichment of analyte ions relative to Ar"^ and other background 

ions has been noted previously[3] and may be caused by the Auger neutralization process 

described by Koppenaal et a/[71]. Ions like Ar'̂ , whose neutral analogs have high ionization 

energies, can be neutralized preferentially as they pass near a metal surface. This process 

could occur inside either the sampler or skimmer, or both. Alternatively, Tanner suggests 
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that Ar"*" ions can be lost preferentially by resonant charge transfer reactions with neutral Ar 

atoms behind the skimmer or inside the ion lens. The resulting product Ar"^ ions have 

different kinetic energies than the original Ar"^ and are scattered out of the beam, are not 

transmitted efficiently by the lens, and/or simply stay within a potential well inside the lens 

[69]. 

4.2.3 Effect of Cs Matrix Figure 8 shows that addition of Cs matrix 

suppresses the Sc ion signal deposited onto the graphite electrodes with ion lens setting 1 

where the potentials applied to the lenses are such that the ion beam is focused tightly on the 

axis. The beam width is about the same when the two peaks are normalized. It is interesting 

to note that this matrix suppression effect can be alleviated with a different ion lens setting. 

Figure 9 shows that if a slight positive potential is applied to the first lens (setting 2), the 

effect of Cs matrix on deposition of Sc"^ is minimal. This method of reducing matrix effects 

was also observed by other experimental studies in this laboratory[37] and by Denoyer et al. 

[70]. 

These results suggest that if the ions are brought into the ion optics as a relatively 

broad beam, the reduced ion flux with less space charge may alleviate matrix effects. For 

Sc samples with a Cs matrix added, the ion lenses enhance the ion transmission compared 

to that obtained for the grounded ion lenses. Figure 10 shows the effect of ion lens potential 

when the matrix is present. Ion lens setting 2 yields better ion beam intensity than setting 1 

or simply grounding the lenses. 

4.2.4 Effect of Photon Stop A photon stop (or a stop lens) is normally used 

to block the photons emitted by the ICP. Such a photon stop is normally charged as a part 
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of the ion lens setting to facilitate the ion flow. Because the photon stop is in the center of 

the ion path, it is expected to play a critical role on the ion transmission through the ion 

optics. 

Figure 11 shows that when the photon stop is in place, applying the voltages 

corresponding to lens setting 3 (see Table 2) enhances the ion transmission by about 30% 

compared to the transmission when all the lenses were grounded. When a Cs matrix is added 

(Fig. 12), applying a nonzero voltage to the photon stop and lens enhances the transmission 

of Sc"*" only moderately. This observation suggests that matrix effects are more severe when 

the photon stop is in place, and the potential on the ion lenses including the photon stop may 

have to be changed accordingly to alleviate the matrix effects[72]. 

Apparently, the photon stop has three major effects on the ion extraction process. 

First, it blocks the central flow of the ions. Only the off-axis ions can pass the ion lens, 

which can be seen from the dip in the center of the ion profile in Figures 11 and 12. Similar 

observations were reported in the ion trajectory simulations of Vaughan and Horlick[73]. 

Secondly, the photon stop reduces the overall ion intensity, in this experiment, by a few 

hundred fold. Thirdly, the photon stop plays an important and complex role in the space 

charge effects and matrix interferences in ICP-MS. 

4.2.5 Deposition of Yttiium Oddly, the deposition behavior of Y differed in 

several ways from that of Sc. Ion lens settings 1 and 2 reduce the transmission of Y"*" slightly 

(see Figure 13); setting 1 transmits more ions than setting 2. Nevertheless, ion lens settings 

1 and 2 still yield slightly higher ion signals than do the grounded lenses for a solution of 

Y with Cs matrix (Figure 14). Deposition of Y with Cs as a matrix element produces some 
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strange results. The addition of Cs increases the amount of Y deposited in the targets 

compared to that from the Y solution only (Figures 15 and 16). The blank Cs standard 

solution was analyzed and contained very little Y, not nearly enough to account for the 

obtained increase in Y signal. We also tried Cs standards from three different vendors and 

the results were about the same. This enhancement was also confirmed by repeated 

experiments and by depositing Y on a Ni grid. Scanning electron microscopy shows a 

broader image of deposited ions when Cs is added to the solution compared to the deposition 

of Y solution alone, and energy dispersive X-ray spectrometry shows that the Y 

concentration on the Ni grid increases as the Cs matrix is added. Perhaps there is some 

codeposition process with Cs that enhances the deposition efficiency for Y. 

5. CONCLUSION 

Ion deposition provides some experimental information about the ion beam profile in 

the second stage of an ICP-MS device. The lens focuses the beam, but not nearly as tightiy 

as SIMION would predict. Unexpectedly, the suppression of Sc"^ corresponds more to loss 

of total Sc"*" than to broadening of the Sc"^ beam, in general agreement with the fluorescence 

measurements of matrix effects on Sr"^ by Hobbs and 01esik[74]. Applying appropriate 

potentials to the ion lens can alleviate the matrix effect. The same lens settings that enhance 

Sc"^ signal are not as effective in enhancing the Y"^ signal, although they do alleviate the 

matrix effect to a smaller extent. The photon stop in the ICP-MS significantiy reduces the 

ion signal intensity and changes the shape of the spatial distribution of ions from conical to 

bimodal. 
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Plasma gas flow rate 14 L/min 

Nebulizer gas flow rate 1.05 L/min 

Auxiliary gas flow rate 0.4 L/min 

RF Power 1000 W 

Nebulizer type Meinhard TR30-C3 

Sampler orifice diameter 1.0 mm 

Skimmer orifice diameter 1.59 mm 

Sampling position 7 mm from load coil, on center 

Sampler-skimmer separation 9 mm 

Skimmer tip-target separation 94 mm 

Electrode material "F" purity graphite, SPK grade, high density 

Electrode diameter L59 mm (1/16 inch) 

Diameter of ion lens 22.6 mm, stainless steel 

Graphite target potential -1000 V 

Ion deposition time 60 min. 

Target-grid separation 10 mm 

Diffusion pump speed 2,400 L/s air 

First stage pressure 2 torr 

Second stage pressure 1.0x10"^ ton-

Shielding screen Stainless steel 304, mesh 24, 67% transparent 
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Table 2. Voltages corresponding to different ion lens settings (in volts). Letter (a)-(c) denote 
the individual lenses, as shown in Fig. 1. 

Settings First Lens (a) Second Lens (b) Photon Stop (c) Plate Lens (d) 

All grounded 0 0 - 0 

Setting 1 -110 -40 - -50 

Setting 2 2 -50 - -60 

Setting 3 
(With photon stop) 

2 7 0 -15 
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Figure 1. Top view of deposition apparatus. The targets were oriented horizontally. A: 

sampler. B: skimmer. C: ion optics, including the following elements: a: first cylindrical ion 

lens, b; second cylindrical ion lens, c: photon stop (not shown here, see Figure 6), d: plate 

ion lens. D: grid. E: graphite targets. F: water cooled mounting clamp and stand off, 

potential of -1000 V was provided by an electric feedthrough connected to a high voltage 

power supply. 
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lOOOV 

Figure 2. Top view of the SIMION ion trajectory simulation with all the ion lenses set at 

ground potential. This is the X-Z plane shown in Figure 1. The grids at the right represent 

the deposition targets. Each grid is 0.94 mm wide in this and Figs. 3-6. 
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Figure 3. SIMION ion trajectory simulation with all the ion lenses set at ground potential. 

This is a side view of Figure 2, i.e., the Y-Z plane from Figure 1. The two grids at the right 

represent the thickness of one of the target electrodes. 
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Figure 4. SIMION ion trajectories for ion lens setting 1. 
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Figure 5. SIMION ion trajectories for ion lens setting 2. 
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Figure 6. SEMION ion trajectories for ion lens setting 3 where a photon stop is present. 
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4. AN INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER WITH A 

MOVABLE QUADRUPOLE MASS DETECTOR 

A paper to be submitted to Journal of American Society of Mass Spectrometry 

Xiaoshan Chen and R. S. Houk 

ABSTRACT 

Currently available ICP-MS devices can not provide angular ion intensity and 

composition information, which are necessary to further understand the ion extraction 

process, the space charge effects and ion loss mechanisms in the second stage of the ICP-

MS. In order to increase the ion transmission efficiency in an ICP-MS device, a new ICP-

MS device is designed and constructed which can be used to reveal the spatial distribution 

of the ion beam leaving the skimmer. The detector chamber moves inside a larger outer 

chamber such that the inner chamber can pivot away from the central Une of the ion beam 

while detecting ions. 

INTRODUCTION 

An ICP-MS device consists of an inductively coupled plasma, an interface, and a 

mass spectrometer. The ICP part of the device in this design is a commercial ICP RF 

generator with a matching box (Model HPS 3000D, Plasma-Therm, Inc, now RF Plasma 

Products, Kresson, NJ), and it will not be discussed fiirther. The interface of the ICP-MS, 



www.manaraa.com

88 

as shown in Figure 1, is used to extract the ions produced in the central channel of the ICP. 

The mass spectrometer part of an ICP-MS device is very similar to any other quadrupole 

mass spectrometer except that the ionization source is replaced by the ICP and the interface. 

Figure 2 shows the layout of the quadrupole mass spectrometer in the Perkin-Elmer SCIEX 

ELAN 250 ICP-MS. 

The overall efficiency of the ICP-MS is about 5x10^. Therefore, for every 10® 

analyte ions in the central channel of the ICP, only 5 ions reach the mass detector of the 

ICP-MS[1, 2]. The rest of the ions are believed to be lost in the skimmer, ion optics and 

quadrupole mass analyzer. A majority of ions are lost in between the skimmer and the Jfirst 

ion lens. Theoretical calculations predict the total current passing through the skimmer is 1.5 

mA whereas the measured total ion current at the base of the skimmer is only 6 fiA. There 

are two established factors that affect the recovery of the ions that pass the skimmer orifice. 

The first factor is the rarefaction of the beam as it travels downstream from the skimmer tip. 

As stated in the previous chapter, the beam entering the skimmer orifice is considered a 

continuation of the supersonic expansion, and the beam entering the skimmer is still 

considered quasineutral in nature. For the same area the flow at the entrance of the ion lens 

50 mm downstream of the skimmer tip becomes only 1.5% of the flow at the skimmer tip, 

and the current through the same area is reduced from 1.5 mA at the skimmer tip to 22 fiA 

at 50 mm downstream from the tip, simply due to the expanding nature of the beam and the 

need for low pressure. Therefore, the ion flow through the skimmer cannot be completely 

recovered. The second factor is the space-charge-limited current flow. As has been 

established in the previous chapter, the perveance corresponding to the measured 6 /iA in 
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the ICP-MS already exceeds the maximum perveance without space charge effect by a factor 

of over 5000. thus the current flow in the ion optics is space-charge-limited. It is then 

reasonable to believe that between the skimmer tip and the first ion optics the ion flow is in 

the transition between plasma flow and space-charge-limited flow. It should be noticed that 

a current collecting electrode is always negatively charged, therefore when placing an 

electrode at the base of the skimmer to measure the current flow, the space charge induced 

by the potential at the electrode is comparable to the effect of the ion optics. The theoretical 

1.5 mA probably would never be measured. 

In summary, the beam spreading due to the increase in Debye radius and subsequentiy 

the space charge buildup under the influence of the ion optics causes the loss of ions in this 

stage. Therefore there is interest to investigate how the ion beam spreads behind the 

skimmer, i.e., the angular ion composition and intensity distribution, and how this spread 

changes with respect to the change in the composition and mass of sample matrix, in order 

to further understand the ion extraction process, the space charge effects and ion loss 

mechanisms in this stage, so that the ion transmission efficiency in an ICP-MS device can 

be increased. Currenfly available ICP-MS devices can not provide such angular information. 

The purpose of the current study is to design and construct an inductively coupled 

plasma mass spectrometer, as shown in Figure 3 in a side section view, which can be used 

to reveal the spatially resolved ion distribution of the ion beam leaving the skimmer to 

provide information about the composition and intensity of the beam by incorporating a 

movable inner chamber inside a larger outer chamber. The inner chamber can pivot away 

from the central line of the ion beam while detecting ions. The rest of this section describes 



www.manaraa.com

90 

the general features of this new ICP-MS device, and the detailed design is given in the 

experimental section. 

The ICP-MS device is designed to operate in one of the three modes: 

1) regular mode. The ICP-MS runs the same way as other similar devices, when the 

central line of the inner chamber is aligned with the central line of the interface and with the 

inner chamber at the fiill forward position. 

2) pivoting mode. The inner chamber moves away from the central line of the 

interface and collects the ions as it is pushed by a lateral motion feedthrough (Y-axis) at the 

base of the ball bearing plate. The pivoting center is at the tip of the sampler, and the 

maximum pivotiag angle is 20® (see Figure 4). 

3) linear motion (X-axis) mode. In this mode, the central line of the inner chamber 

is aligned with the central line of the interface during the motion, while the distance between 

the inner chamber and the interface changes by turning the X-axis positioner at the base of 

the inner chamber connected to an axial motion feedthrough through the outer chamber (see 

Figures 5 and 6). 

In addition, a laser beam can be introduced through the viewing port directly, or 

through an optical fiber mounted through the viewing ports, at the front of the extraction tip 

of the inner chamber (see Figure 3). Thus, experiments such as laser dissociation and laser 

ionization of polyatomic species coupled with mass spectrometry can be done. 
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EXPERIMENTAL SECTION AND DISCUSSION 

Outer Chamber Design 

The outer chamber (see Figures 7, 9 and 10) consists of the interface assembly, the 

chamber body, the turbomolecular pump port, a few electrical feedthrough ports, the 

diffusion pump port, the UV-vis viewing ports, a Bayard & Alpert type ionization gauge tube 

port, and the back flange assembly. The outer chamber design will be divided into two parts 

for discussion: the interface assembly and the outer chamber assembly. 

Interface Assembly The interface design (shown in Figure 8 and Figure 9) is similar 

to other ICP-MS devices constructed in this laboratory[l, 3-7]. It consists of a sampling 

flange, a sampler, an interface chamber, a skimmer flange and a skimmer. The copper 

sampling flange and the skimmer flange all have a 6.35 mm O.D. (1/4 in.) copper cooling 

water line embedded and soldered on it. The water cooling tubes of the sampler flange and 

the skimmer flange are designed such that they can be easily connected in series so that they 

need only one cooling water outlet. 

Sampler and Slammer The sampler is made of either nickel or copper. The 

sampler tip has a 1.0 mm diameter orifice and the base inner diameter is 20.3 mm (0.8 in.). 

The skimmer is made of stainless steel with tip orifice of 0.7 mm in diameter and the base 

inner diameter is 31.8 mm (1 1/4 in.). Both the sampler and the skimmer orifice size are the 

same as the ones used in the ICP-MS device by VG Instruments, Inc. but smaller than the 

ELAN ICP-MS devices (1.14 mm and 0.89 mm respectively). 

Interface Chamber The interface chamber is stainless steel with a port that connects 

to a 33.86 mm (1 1/3 in.) rotatable CF flange for a convectron vacuum gauge (Model 275, 



www.manaraa.com

92 

Granvile-Phillips Company, Boulder, CO), and another port that goes to a Kwik-Flange 

(25.4 mm (1 in.) tube O.D.) for the roughing pump. The direction of the flange tubes are 

such that the lengths of the connecting tubes are minimized and yet they do not interfere with 

other attachments. Because the inner chamber has to be able to pivot 20° away from the 

interface central line, the central line of the interface is shifted off the center of symmetry 

of the outer chamber, as shown in Figure 9. 

Mach Disk Position The adiabatic expansion of plasma gas into the first stage 

of an ICP-MS device through a small orifice forms a fi-ee jet expansion. This jet is 

supersonic because the gas kinetic temperature decreases rapidly and the gas flow speed 

exceeds that of the local speed of sound. The center of the free expansion region is called 

the "zone of silence" and is surrounded by a concentric barrel shock. The expansion 

terminates downstream in a perpendicular shock wave known as the Mach disk. The position 

of the Mach disk is given as follows: [8, 9] 

= 0.«7D„A'« (1) 

where x„ is the distance between the sampler tip and the Mach disk. Do is the sampler orifice 

diameter, Pq is atmospheric pressure, and P, is the pressure in the first stage. In the Mach 

disk the jet is disturbed by collisions with the background gas, the density and the 

temperature of the gas increases, and the flow stagnates and becomes sub-sonic. Thus the 

position of the skimmer tip should be in fi-ont of the Mach disk. If skimmer tip is right at 

the position of the Mach disk, the ion signal is far from maximum, the polyatomic ion signal 

may increase, and the skimmer tip gets too hot and degrades easily. Therefore it is important 
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in ICP-MS instrumentation to calculate the position of the Mach disk, and to choose the 

optimal position for the skimmer to maximize the ion signal in ICP-MS. Assuming Dq is 1.0 

mm, Po is 760 torr and Pi is 1.5 torr, the onset of the Mach disk is at 15 mm downstream 

of the sampler tip. 

Sampler-Skimmer Separation The optimal separation between the sampler and 

the skimmer is based on the following equation that gives the best neutral beam 

intensity: [8,9] 

(2) 

where x,,„ is the optimal sampler-skimmer separation, Cj is equal to 0.125, K^o is the 

Knudsen number at the sampler orifice. The Knudsen number can be used to characterize 

the flow regimes of a gas beam: [10] 

0 < Ko < 0.01 continuum flow (gas-gas collisions dominate) 

0.01 < Kn < 0.1 slip flow 

0.1 < Kn < 10 transition flow 

10 < K„ free-molecular flow (gas-surface collisions dominate) 

The Knudsen number is given by the following equation; [10] 

(3) 

where the X^ijc is the viscosity based mean free path, given by the following equation:[10] 
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^visc 11 ~ (4) 
^^oQyisc 

Qvijc is called the viscosity based, hard sphere type total cross section: [10] 

Q ^ 5[27:MkT\''̂  

l6n[2N^^ 

where M is the gas molecular weight in a.m.u., and jj is the viscosity in poise. Although 

Qvisc equals 41 A? at 293 K and people have used this value for calculations at other 

temperatures, the viscosity is a function of temperature. According to the CRC Handbook 

of Chemistry and Physics, the viscosity is linear at temperatures between 273 K and 1100 

K. Extrapolating the data to 5000 K, ij is 2255 x 10^ poise (compared to 234.4x 10^ poise 

at 293 K), which gives Qv^c = 16.6 A^, and = 2.9x10"^ cm. For a sampler diameter 

of 1.0 mm, Koo is 2.9 x 10'^. This means that at the tip of the sampler the flow is continuum 

and the gas-gas collisions dominate the flow. Assuming at the skimmer tip the temperature 

is 152 K[9], and the skimmer orifice diameter is 0.89 mm (a typical ELAN device value), 

a similar calculation indicates that K, = 0.26, so the flow at the skimmer tip is in the 

transition flow regime, where there are still some collisions between gas molecules. 

Assuming the same Dq, Pq and Pi values as above, the optimal sampler-skimmer separation 

is 7 mm. Therefore we choose 7 mm as our sampler-skimmer separation, which is similar 

to a typical ICP-MS device such as the SCIEX ELAN 250. 

Outer Chamber Assembly The diameter of the outer chamber is determined by the 

maximum pivoting width of the inner chamber (see Figure 4). 
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Ports There are three viewing ports welded on the outer chamber near the skimmer 

flange, one on each side and one on the top (see Figures 7, 8 and 9). The viewing ports have 

sapphire windows, and they can transmit UV-vis laser beams. The three viewing ports are 

placed such that a laser can be shot directly at the front of the extraction tip (see Figure 3), 

or the laser beam can be introduced using an optical fiber which can be mounted close to the 

tip of the extraction cone and moved together with the inner chamber. The top viewing port 

can be used to view the resulting scattering or fluorescent signal directly, or it can be used 

to mount an optical detector, such as a photodiode array or a CCD, directly in the chamber. 

Therefore laser dissociation of polyatomic ion experiment can be done in this fashion. The 

outer chamber pressure is measured through a port for a Bayard & Alpert type ionization 

gauge (shown in Figures 7 and 9). The bottom port in Figure 9 is to be connected to a 

cryotrap, and the side port in Figure 9 is the turbomolecular pump assembly that provides 

a pumping path through the metal bellows (Model 60285-7, Senior Flexonics, Inc., Metal 

Bellows Division, Sharon, MA) to the inner chamber (see Figure 6 or Figure 13). The metal 

bellows is made of stainless steel with 8.9 cm (3.5 in.) I.D., and it is extendable (extended 

length 20 cm) and compressible (compressed length 5.9 cm). The connections at the ends 

of the metal bellows are made with Kwik-Flanges for easy assembly. The details of the 

pumps will be discussed in the pump system design section. The top port is the electrical 

feedthrough port that provides all the electrical connections to the inner chamber and the pre

amplifier. The details of the electrical signals will be discussed in the quadrupole control and 

data acquisition section. 

Back Flange The back flange of the outer chamber is hinged to provide 
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convenience in operation due to its size and weight (see Figures 10 and 6). There is an axial 

translational feedthrough assembly built on the back flange to carry out the third mode of 

operation (shown in Figures 3 and S). The axial feedthrough is mounted on the back flange 

using a CF flange through which the feedthrough is inserted into the outer chamber. The 

shaft of the feedthrough is designed such that it can be pushed linearly in the vacuum 

chamber until it strikes the micrometer of the X-axis positioner. Then the feedthrough can 

be turned to move the inner chamber in the X-axis direction, while the pivoting angle is 0°. 

In this way, the inner chamber can be used to detect ions at different locations along the ion 

beam axis. The information obtained then reveals the ion intensity changes as a function of 

the distance behind the skimmer. 

Inner Chamber Design 

Inner Chamber The inner chamber, shown in Figure 11, consists of the 

extraction cone, the front chamber cone, the chamber body, the mass analyzer assembly, the 

X-Y-Z axis positioners, the radial swing mechanism assembly, a pumping port to the 

turbomolecular pump through a stainless metal bellows, a supporting cradle that houses the 

quadrupole mass analyzer and the detector and back flange. An extraction cone is necessary 

because it makes replacing a damaged orifice easier without having to replace the whole 

front chamber cone. The extraction cone is made of stainless steel with a 1.6 mm diameter 

orifice. There is no photon stop in this device (if necessary it can be added in the ion lens 

stage) since the inner chamber can be easily pivoted to a small angle to keep the photons out 

of the ion path. The extraction cone can be charged to conduct the ions into the inner 

chamber. The front chamber cone can be insulated by inserting a Vyton washer in between 
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the front chamber cone and the inner chamber body, and using Nylon socket head screws 

to join them. In order to maximize the pumping efficiency, there should be no protrusion on 

the front surface of the iimer chamber. To achieve this the extraction cone is designed to 

have no flanges or screws on the surface, and the junction between the extraction cone and 

the front chamber cone is smooth, too. It does however have a pair of small holes that are 

designed to be able to use a specially designed tool to remove or mount it onto the front 

chamber cone. The outer angle of the extraction cone and the front chamber cone is 60°, 

which envies the inner chamber to be placed close to the skimmer while still providing 

enough space for pumping. 

X-Y-Z Stage There is an X-Y-Z translational stage underneath the inner 

chamber, shown in Figures 11 and 12, which is mounted on a movable mechanism that 

allows the quadrupole mass analyzer to sample the ions in a supersonic beam in a range of 

0-20° away from the central line of the beam. The X-Y-Z translational stage consists of the 

following components (from top down). The Z-axis plate provides some adjustment in the 

vertical axis (Z-axis) through four screws at the each comer, and the Z-plate is in turn 

mounted on a ball bearing stage (Model 4418-Pl, CMA, Minneapolis, MN) as the Y-axis 

stage, and another ball bearing stage (Model 4413-Pl, CMA, Minneapolis, MN) as the X-

axis stage, which is mounted on the motion mechanism. The X-Y-Z translational positioner 

adjusts the sampling position of the mass analyzer in all three dimensions relative to the 

center line of the ion beam and corrects for any possible misalignment in the manufacturing 

process. The support base of the swing mechanism is welded inside the outer chamber. 

Flanges All the ion lens system, the entrance mass filter, the quadrupole mass 
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analyzer and the detector are mounted on the inner chamber back flange through the cradle 

and can be removed from the back of the inner chamber for servicing. The detector is 

moimted on a separate detector flange which can be easily taken out from the rest of the 

inner chamber without removing the quadrupole. Contrary to some other ICP-MS devices 

including some commercial ones, this design makes it easy to access and dismount the 

detector and quadrupole assembly. At the center of the detector flange there is a viewing port 

for laser alignment of the interface orifices, extraction orifice, the quadrupole inlet/outlet, 

and the detector (see Figure 12). All the electrical connections to the quadrupole assembly 

are made through the quadrupole flange at the back (shown in Figure 12). Welded in the 

quadrupole flange are two RF feedthroughs for the quadrupoles, and a multi-pin connector 

for the ion lenses. The RF feedthrough and the multi-pin connector are of the hermetically 

sealed and pressure tight type (W.W. Fischer Inc., Atlanta, GA). 

Motion Mechanism The design of the motion mechanism for the inner 

chamber is the key component of the project. Design considerations include the following. 

1) The inner chamber hangs from the top of the outer chamber through an 0-ring sealed 

port. Movement of the inner chamber is driven from outside the outer chamber. The flange 

moves only in a given curve. 2) The inner chamber is pumped through a metal bellows 

inside the outer chamber and is built on a circular motion guide that slides on a curved rail 

shaft. The final design uses a ball bearing plate that contains a set of three ball bearings 

positioned in a triangle. Two of them roll on a V-shaped swing groove carved on top of the 

swing plate to provide the motion and a set of two ball bearings beneath the swing plate 

through a spring to pull the top ball bearings down into the groove (see Figures 5 and 12). 
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This assembly allows the mass analyzer to pivot by up to 20° around the tip of the sampler 

of the ICP-MS by pushing the ball bearing plate through the lateral motion feedthrough 

(shown in Figure 4). 

Pumping Considerations The inner chamber is pumped through the metal bellows 

which is connected to the turbopump. To maximize the pumping of the inner chamber, 

neither the conductance of the inner chamber nor the conductance of the metal bellows 

should become the limiting factor for pumping. Under the molecular flow conditions (P < 10^ 

torr), the conductance of a tube with diameter D (cm) and length L (cm) is given as: 

It can be calculated that the conductance of the inner chamber is 2138 1/s (the tapered cone 

portion is ignored), and the conductance of the metal bellows is 5721/s. The pumping speed 

of the turbopump is 145 1/s. Thus the conductance of the vessel is 1101/s, which is 76% of 

the turbopump pumping power. Therefore turbopump is not too limited by the conductance 

of the inner chamber. 

Ion Lenses and Mass Analyzer 

The key component of the whole iastrument is the quadrupole mass analyzer 

assembly, which is contained in the inner chamber. The mass analyzer consists of the ion 

lens assembly, the RF only entrance quadrupole mass filter, the quadrupole mass analyzer. 

(6) 

the pumping speed of the vessel is given as: 

pump 

(7) 
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the quadrupole supporting cradle, the mass detector assembly and its flange. 

Ion lenses As shown in Figure 11, the ion lens assembly consists of three ion 

lenses: the first one is a cylindrical extraction lens with small holes in the cylinder to 

increase the pumping efficiency, the second and the third are plate lenses. There is a exit ion 

lens at the end of the main quadrupole, and the electrical lead goes through a small hole in 

the cradle. AH the ion lens are powered through the multi-pin connector at the quadrupole 

flange. It has been proposed in the previous chapter and verified in this laboratory [1, 4] that 

the extraction lens should be charged with a slight positive potential to alleviate the matrix 

effect and to improve the sensitivity. The potentials on the other plate lenses need to be 

charged negatively and optimized experimentally to maximize the ion signals. 

BF Only Rods The mass analyzer consists of two sets of quadrupole rods. The 

first one is a short (19 mm long) RF only quadrupole to facilitate the transmission of all the 

ions passing through the lenses. The RF only rods are round stainless steel tubes and are 

built in the Ames Lab Machine Shop. They are mounted in a Macor ceramic support in a 

stainless extension tube which is fitted in front of the main quadrupole housing tube. The 

extension tube is made such that the gap between the two quadrupoles is minimal but not in 

touch and the rods are aligned with each other. 

Main Quadrupole The main mass analyzer is a 9.5 mm (3/8 in.) quadrupole 

(Model 162-8) from Extranuclear Laboratories, Inc. (now Extrel Mass Spectrometry, 

Millipore Corporation, Pittsburgh, PA). The mass filter housing is supported in a cradle that 

is welded onto the quadrupole flange. The cradle serves two roles. 1) It houses and supports 

the quadrupole housing, the orientation of which can be adjusted slightly by turning three 
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screws on the top and each side of the cradle, and one screw in front bottom. 2) The cradle 

also houses the detector. 

Wiring and Connections If possible, all the unshielded electrical connections 

inside the vacuum chamber should be made of bare stainless wire insulated with ceramic 

beads to ensure easy degassing and durability. But plastic insulated wires are acceptable if 

necessary (e.g. ELAN 250). The shielded connections (e.g., signal) can be made with 

normal shielded BNC connectors and compatible wires. The RF power is connected to the 

quadrupoles in the following way (see Ke Hu's Ph.D. thesis. Figure 3, p. 158). The RF 

power is connected to the main quadrupole. The electrical connection between the RF rods 

and the main rods is made through a pair of capacitors (50 pF, 7.5 KDCV, ceramic) to block 

out the DC component from the power supply (thus it's RF only). A separate DC power 

supply is connected through a pair of 1 MQ resistor to the RF only rods to provide the bias 

potential, which is a parameter in the optimization. 

Pumping System Design 

The pumping system consists of three mechanical pumps, a diffusion pump, a 

turbomolecular pump, a sliding gate valve and a cryotrap (only the turbomolecular pump is 

shown in the figures). 

Roughing Pumps The mechanical pump can start to function from atmosphere. 

The minimum pressure that can be achieved by the mechanical pumps is about 10"^ torr. The 

first mechanical pump pumps the interface chamber (the space between the sampler and the 

skimmer). The pump provides a pressure of 1~2 torr at the interface region during 

operation. The second mechanical pump is used for rough pumping the outer chamber and 
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to evacuate the foreline of the diffusion pump through a valve. The third mechanical pump 

is used to rough the inner chamber and to support the turbomolecular pump through a 

mechanism in the turbopump flange and a valve. 

Diffusion Pump The diffusion pump (Model VHS-6, Varian Vacuum Products, 

Lexington, MA) has pumping speed of 2400 L s"' for air. The minimum pressure can be 

reached by the diffusion pump is 5 x 10'' torr. The sliding gate valve is used to isolate the 

diffusion pump and the chamber. The diffusion pump wiU not function when it is exposed 

to high pressure. Therefore the gate valve should only be opened when the pressure in the 

outer chamber reaches 10"^ torr or lower. The cryotrap (Model 362-6, Varian Vacuum 

Products, Lexington, MA) uses liquid nitrogen as the cooling medium and when filled 

(capacity 10 1) can last 8 hours in the summer (or 10 hours in the winter) before refill. 

Turbopump The TURBOVAC turbomolecular pump (Model TMP 151, 

Leybold Vacuum Products, Export, PA), with pumping speed rated at 145 1/s for N2, is 

grease-lubricated with ceramic ball bearings and therefore can be mounted in any orientation. 

It comes with a CF-100 flange for a 15.2 cm O.D. pumping tube. The turbopump is 

powered and controlled by a TURBOTRONIK NT 150/360 frequency converter. The 

frequency converter converts the single-phase AC voltage into a three-phase AC voltage 

suitable for driving the three-phase asynchronous motor of the TURBOVAC. It also performs 

automatic monitoring functions. The turbomolecular pumping port assembly contains a 

roughing mechanism that is to be used for roughing the inner chamber to ~ 10"^ torr before 

the turbomolecular pump starts. When the diffusion pump and the turbopump are ready to 

function, the valves that are used to rough the chambers need to be closed, and the 
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mechanical pumps are now only used to evacuate the foreline of the diffusion pump or the 

turbopump. 

Safety Considerations The diffiision pump and the turbopump are cooled by 

chilled water. The cooling water needs to be running at all times. Should a power outage 

occur when the diffusion pump is functioning, the sliding gate valve and the valve between 

the diffusion pump and its support pump need to be closed immediately, otherwise the oil 

in the diffusion pump will backstream into the vacuum chamber. 

Ouadrupole Control and Data Acquisition Svstem Design 

Figure 14 shows a diagram of the quadrupole control and data acquisition system. 

From the hardware point of view, the quadrupole control system and the data acquisition 

systems are two separate systems, and they normally are purchased separately, too. They 

become an integral part of a system through the computer. 

Quadrupole Control System The quadrupole control system of the ICP-MS 

device consists of the mass spectrometer quadrupole control, the radio frequency power 

source, the high-Q head, a digital to analog converter, and a personal computer with 

appropriate software. The quadrupole control, the RF power source and the high-Q head are 

from Extranuclear Laboratories, Inc. (now Extrel Mass Spectrometry, Millipore Corporation, 

Pittsburgh, PA). 

Control Process The computer sends out a digital signal to the D/A converter, 

which is usually an interface board or a part of such a board inserted in the ISA bus of the 

computer, to be converted into a voltage signal. The analog signal goes to the SWEEP IN 

connector in the quadrupole control. The way the voltages are sent determines the way the 
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quadrupole functions. In the peak hopping mode, a set of discrete voltages are sent in 

sequence; in the scanning mode, a ramping voltage is sent continuously. The voltage signal 

is in the 0 to +10 V range, corresponding to m/z= 0 to 300. For a normal quadrupole 

device the resolution is AM = 0.1 a.m.u., therefore the D/A converter should be able to 

produce at least 300/0.1 = 3000 different voltage levels in order to match the resolution. 

Therefore, the digital resolution is the most important characteristics for the D/A converter. 

The digital resolution is expressed in number of bits. A 12 bit D/A converter is capable of 

outputing 4096 different voltage levels, which is normally enough. However, a 16 bit D/A 

converter with 65536 ramping level can provide better than AM = 0.01 a.m.u. capability, 

to fuUy take advantage of the maximum resolution of the quadrupole mass analyzer. After 

the quadrupole control receives the ramping signal, it controls the radio frequency power 

source, which in turn sends the signal to the high-Q head, and finally the RF and the DC 

bias signal are sent to the quadrupole to pass the ions at given mass range and resolution. 

Synchronization Immediately after each control signal is sent, the data 

acquisition system starts to collect the signal from the detector for a given period of time 

(dwell time). Because the control step (signal out) and the data collection step (signal in) 

must be synchronized, attention must be paid before purchasing a data acquisition software. 

Unless specially written for an MS application, a general purpose data acquisition software 

does not usually include an analog output controlling part, and synchronization of controlling 

the mass q)ectrometer and coUectmg the data can be a problem. However, some data 

acquisition software does allow incorporation of other control software if it does not contain 

one. Other choices include writing one's own program, or buying a complete MS application 
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package. 

Data Acquisition System The data acquisition system of an ICP-MS is usually a 

single channel counting system, which consists of a channel electron multiplier (the detector) 

with a high voltage power supply, a preamplifier, an amplifier, a discriminator, a counter 

with the IEEE-488 communication option, and a computer with the IEEE-488 board (shown 

in Figure 14). The discriminator is often built into either the amplifier or the preamplifier 

unit. In this section the general design of data acquisition for the ICP-MS system is 

discussed, and two such data acquisition systems available are compared, the first, the PRM-

100 Systems (referred to the PRM system, from Advanced Research Instruments Corp., 

Boulder, CO), which is available as a complete system, and the second and more expensive 

system (EG&G ORTEC, Oak Ridge, TN), which needs to be bought as separate components 

and assembled, as has been used for the twin-quadrupole mass spectrometer in our lab. 

1) Detector Electron multipliers have been used as detectors in mass 

spectrometers for over thirty years. Channel electron multipliers (CEM) are made from a 

specially formulated lead silicate glass and coated with lead oxide, which produces the 

conductivity and secondary emissive characteristics. The count rate limits of the CEMs 

determine the frequency requirement of the preamplifier, the amplifier and the counter. 

Earlier CEMs were limited to about 10® counts per second maximum. The newer devices can 

be operated in excess of 10' cps. The Channeltron 4830 device (Galileo Electro-Optics 

Corp., Sturbridge, MA) is capable of 10' cps counting rate, so it is adapted in this ICP-MS 

device, as has been used ia our labs as the detector for our ICP-MS devices. To avoid alias 

sampling, this count rate mandates a counting frequency of 100 MHz (10 times the maximum 
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count rate) for the subsequent devices. 

2) CEM Power Supply The gain of the CEM is dependent on the applied 

voltages. Although the CEMs are generally used near saturation, a quiet, stable power supply 

is desirable to minimize the flicker noise from the detector. There is a low noise power 

supply for the PRM system, whose features include less than 100 iiY peak-to-peak noise 

level, 100 ppm stability. The EG&G provides a 5-kV detector bias supply with less than 10 

mV peak-to-peak noise level, better than 1000 ppm hr^ stability. 

3) Preamplifier The preamplifiers used for mass spectrometers are fast, current-

sensitive preamplifiers that convert fast current pulses to voltage pulses. The timing 

resolution is the key characteristic of such a device. The pulse pair resolution should be 10 

ns or better (i.e., the inverse of 100 MHz). The PRM system has two options; the F-IOOE 

(ECL logic standard, discussed later in this section) preamplifier has pulse pair resolution 

of 5 ns, the F-IOOT (TTL logic standard) has 10 ns resolution. The EG&G has rise time of 

< 1 ns (no pulse pair resolution data). All are fast enough for our needs. 

The signal from the CEM goes directly to the input of the preamplifier. A long cable 

connection between the detector and the preamplifier adds input capacity, and also makes the 

electronics more susceptible to RF interference noise from the ICP or the quadrupole power 

supply. Both effects can degrade the signal resolution and timing. Therefore the connection 

between the CEM and the preamplifier must be minimized in order to improve the signal to 

noise ratio. In order to minimize the cable length, the preamplifier is mounted inside the 

vacuum chamber right next to the outlet of the CEM. There is a clamp near the end of the 

inner chamber to fasten the preamplifier. The cable used should be also a high quality one, 
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not just any BNC cable, which may have defects in its shielding. The best choice for this 

connection is the Belden RG-58/U 9223 low triboelectric coaxial cable, designed for audio, 

communication and instrumentation, and is available as free samples in short lengths.(!) 

4) Amplifier The amplifier is used to amplify the voltage pulses produced by 

the preamplifier, and it has to be able to handle 100 MHz signal rates. For the PRM system, 

the amplifier is part of the rate counting system. For the EG&G system, the amplifier (9302 

Amplifier/Discriminator) has a gain of either 20 or 200. 

5) Discriminator The discriminator removes the dark current pulses from the 

signals. Most of the dark current pulses are lower in magnitude than the signal pulses. A 

discriminator produces an output logic pulse when the input signal crosses a fixed threshold 

level. Any pulse lower than the threshold is ignored. The discriminator is usually built after 

the amplifier. In the PRM system, the discriminator level is adjustable from 200 mV up to 

2.5 V and is built into the amplifier. There is a noise discriminator built in the preamplifier 

to reduce the noise, and the threshold is continuously adjustable with a potentiometer. The 

discriminator in the EG&G system is built inside the amplifier unit (after the amplification 

stage to be exact). The discriminator range is from 50 mV to 1 V, which may not be enough 

in some cases. 

6) Counter The counter is the only module in the data acquisition system that 

communicates with the computer. It counts the rate of the logic pulses produced by the 

amplifier in a given time period specified by the computer and sends these data to the 

computer through the IEEE-488 interface. The counter should be able to handle the 100 

MHz signal rates. The PRM system has a counter-timer system (PRM-100 Precision Rate 
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Meter). The advantages of the system include a) an LED display shows the count rate; b) 

the dwell time base is variable (4 ms to 32 s) and is computer controllable with IEEE-488 

option; c) the counter is compatible with NIM, ECL and TTL logic standards. The EG&G 

provides a counter (997 CCNIM Counter) with 100 MHz capability, LED display, IEEE-488 

option, and compatibility with NIM-positive and NIM-negative logic. 

7) Logic Signal Standards Each data acquisition system and their components are 

compatible only with certain logic standard. Attention should be paid to the compatibility of 

these signal standards when choosing the components. There are four options in the data 

acquisition system: NIM-standard positive, NIM-standard negative, ECL, and TTL. Each 

of these standards has certain frequency limits, and requires using different impedance 

matching cables and terminators for connections. If the module at the receiving end has a 

high input impedance, a tee and a impedance matching terminator is needed at the module 

input to properly terminate the cable to eliminate the reflection. The NIM-standard, positive 

logic, the default setting in the EG&G system, is used for repetition rates from DC to 20 

MHz, which it not fast enough for ICP-MS data acquisition. The NIM-standard, fast negative 

logic and the ECL logic can handle counting rates up to 100 MHz. The NIM negative 

standard requires 50-Q cables terminated in 50-0 at the receiving end. The connections of 

the ECL are usually made using either a ribbon cable or a pair of 100-12 twisted cables. If 

the module at the receiving end has a high impedance, a 100-Q resistor must be connected 

between the pair of wires at the receiving end. TTL logic can handle maximum of 50 MHz 

logic signals, which is faster than NIM-standard positive logic signal, but still not the best 

choice for our purposes. The TTL signal standard is designed such that it is often compatible 
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with NIM-standard positive logic levels, although there is no guarantee. For TTL logic 

signals, 50-Q cables terminated in 50-0 at the receiving end must be used. 
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Figure 1. Illustration of an ICP torch and ICP-MS interface. 
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Figure 2. Illustration of a mass spectrometer in ICP-MS. 
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Figure 3. Section view of the ICP-MS device. 
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Figure 4. Lateral motion of the inner chamber. The maximum pivoting angle is 20°. 
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5. GENERAL CONCLUSIONS 

Matrix effects, in most cases suppression effects, from easily ionized concomitant 

ions on the analyte ion signal in ICP-MS have been known ever since the earliest paper 

published in ICP-MS. Despite the amount of research and efforts in trying to understand the 

phenomenon, there is still a lot of work to be done. 

The matrix effects are believed to originate from several processes. The first theory 

holds that the matrix effects originate in the plasma instead of in the mass spectrometer. The 

easily ionized matrix elements increase the electron density in the central channel of the 

plasma, thus decreasing the analyte ion signal. The second theory attributes the matrix effects 

to the space charge effect in the ion beam in the ICP-MS. Although there is still 

disagreement about where the charge separation occurs, computer simulated ion trajectory 

show that the presence of heavier matrix ions does decrease the transmission of analyte ions 

in the ICP-MS. 

The research of this dissertation focus on some different aspects of the matrix effects. 

The first paper focused on a correction procedure for the matrix effects. It explored the idea 

of using the polyatomic ion signals that occur in the ICP-MS spectrum as internal standards 

to correct the matrix effects. The extent to which the matrix elements suppress both the 

analyte ion and the internal standards were the same, in most cases, if the polyatomic 

internal standard ion is chosen to be close in mass to the analyte ion. Therefore the ratio of 

the analyte ion signal to the internal standard remains the same. A calibration curve can be 

built and the matrix effects can thus be corrected. 
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The question the second and the third papers try to answer is that if the analyte ion 

beams are broadened or even lost in the presence of the matrix elements inside the ICP-MS. 

The second paper measured the radial distribution of the ion beam in the ICP-MS, to provide 

experimental information about the spatial resolution of the ion beam and ion intensities, and 

their changes with and without the presence of Cs as the matrix, under the influence of the 

ion lens potentials. The results showed that the broadening the analyte ion beam is not 

significant in the presence of the matrix, and the ion lens potentials can affect the ion 

transmission and reduce the matrix suppression. The Simion ion trajectory simulation shows 

that applying a slight positive potential on the first extraction lens makes the ion beam 

broader, and the ion density is lower in the ion beam. The ion deposition experiments 

showed that such an ion lens configuration alleviates the matrix effects. This is indication 

that the space charge effects behind the skimmer plays an important role in the ICP-MS. 

The third paper is a project to design and build a special purpose ICP-MS device. The 

device is capable of measuring the spatial distribution of the ion beam in the ICP-MS device. 

The device includes a radially movable inner chamber with a quadrupole mass analyzer 

under the vacuum. The paper provided and discussed detailed information about the system 

design, vwth a number of design diagrams. 

The ICP-MS is by far the most sensitive instrument for elemental analysis. It 

combines the speed of analysis, multiple elemental capabilities, refractory element 

capabilities of the ICP-AES with the sensitivity, simple spectrum and isotope information of 

the mass spectrometry. However, it still faces some problems of its own, including the 

matrix effects discussed in this dissertation. Future work using the device designed in the 
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third paper provide more information about the matrix effects, hence a higher analyte 

ion transmission may be achieved, and a more sensitive instrument may be built. 



www.manaraa.com

128 

ACKNOWLEDGMENTS 

First and foremost, I would like to thank my parents Tingru Chen and Bizhen Cheng 

for all of their support during all the years of my education. They have never been to the 

United States in their lives, and they have probably only seen America on the TV. I, as their 

second son, have not been able to go back to China to visit with them ever since I came here 

to pursue my education in the United States. I feel I owe them a lot. They sure are proud 

of me at this moment, and I am proud of them, too. 

I am very grateful to my wife. Fang Li, who helped raise our two daughters while 

at the same time being able to finish her master's degree at ISU. I am grateful to my 

daughters, too. Our first daughter, Diana, picked up English mostly on her own after she 

came to the U.S. at the age of four with no English experience. Seeing how she learned 

English reminded me my early years of learning English. Our second daughter, Joanna, was 

bom in Ames, and she will remind us what a joy we had with her at ISU. 

I am very grateful to my major professor. Dr. Sam Houk. When I decided to join the 

group in 1990, it was his personality, his friendliness to the students, his knowledge about 

the research, and his teaching skills that attributed to my decision. In my heart, I will always 

remember him as my friend and my professor. I sure have learned a lot from him during my 

graduate studies including English. It was in his group that I became an instrument oriented 

scientist. Without him, none of the work in this dissertation is possible. I would also like to 

thank Sam's wife Linda for all those nice conversations, all those parties, picnics, etc. 

I would like to extend my appreciation to all my Program of Study Committee 



www.manaraa.com

129 

members, Dr. Edward Yeung, Dr. James Espenson, and Dr. Terry King. 

My appreciation also goes to Jerry Hand, Steve Lee, Jim Bemighaus and some others 

at the Ames Lab Machine Shop for helping me make many instrument parts and providing 

me with advice, and Terry Herman at the Ames Lab Engineering Services for helping me 

design the ICP-MS instrument and make the final drawings. 

I would like to thank the ISU Office of Minority Student Affairs for the 1995 

Outstanding Academic Achievement Award that they gave me. 

I am also grateful to Perkin-Elmer SCIEX for the Graduate Fellowship awarded to 

me. The ultrasonic nebulizer provided by CETAC Technologies in our experiments is also 

appreciated. 

I would like to thank all our group members for their friendliness and help. First, I 

would like to thank those who had helped me and left the group. Ke Hu is the first one that 

showed me how to light an ICP, and how the ion lenses are mounted. It was with him and 

his wife and others that we got the 1990 and 1991 GUman Cup for the Departmental 

Volleyball Championships. He also showed me a lot of things I needed to know about the 

school here. Sam Shum showed me how to run the SCIEX ELAN 250 instrument, and 

helped me use the instrument. Hongsen Niu helped with my first experiment. I remember 

Dan Wiederin and Fred Smith, but I didn't have too much chance to talk to them before they 

graduated. I am impressed with Tonya Bricker, the first female group member I worked 

with. I would like also to thank John Hoekstra, who worked with me for a semester on the 

ion deposition studies. Secondly, I would like to thank the current group members including 

Scott demons, Lloyd Allen, and Steve Johnson (with whom I spent a week with at 



www.manaraa.com

130 

PnTCON'95 in addition to all the other times), and Shen Luan, for all the discussions and 

their help. I would also like to thank Mike Minnich and A1 Gwizdala for teaching me 

English, and Narong Praphaitaksit and Renyi Duan (I feel so sad that she is going to drop 

out of the school) for their friendliness. I would like also thank a special group member. Ho

ming Pang, for all the help with instrumentation and computer. I am also grateful to another 

senior group member, Royce Winge, who did some experiments with me. I wish the best 

to all the other members, Elise Luong (the only female group member left), Ma'an Amad, 

and Jay Leach. 

This work was performed at Ames Laboratory under Contract No. W-7405-eng-82 

with the U.S. Department of Energy. The United States government has assigned the DOE 

Report number IS-T 1742 to this thesis. 


	1995
	Matrix effects in inductively coupled plasma mass spectrometry
	Xiaoshan Chen
	Recommended Citation


	 

